Foliations over positive characteristic and irreducible components

Wodson Mendson

Université de Rennes 1 - IRMAR

1 de dezembro de 2022

• The talk is based on my PhD thesis¹ defended this year at IMPA under supervision of Jorge Vitório Pereira.

 $^{^1}$ Folheações de codimensão um em característica positiva e aplicações

Structure of the talk

- Part I: Basic notions;
- Part II: Codimension one foliations in positive characteristic;
- Part III: Irreducible components of the space of codimension one foliations on $\mathbb{P}^3_{\mathbb{C}}.$

Codimension one foliations over positive characteristic Irreducible components Foliations on algebraic varieties

Foliations on algebraic varieties

 \mathbf{k} = algebraically closed field of characteristic $p \ge 0$ (example: $\mathbb{C}, \overline{\mathbb{F}}_p$)

Codimension one foliations over positive characteristic Irreducible components Foliations on algebraic varieties

Foliations on algebraic varieties

 \mathbf{k} = algebraically closed field of characteristic $p\geq 0$ (example: $\mathbb{C},\overline{\mathbb{F}}_p)$

Definition

Let X be a smooth algebraic variety of dimension at least two defined over k. A foliation \mathcal{F} of codimension q on X consists in a coherent subsheaf $T_{\mathcal{F}} \subset T_X$ of rank dim X - q that satisfies the following properties:

Codimension one foliations over positive characteristic Irreducible components Foliations on algebraic varieties

Foliations on algebraic varieties

 \mathbf{k} = algebraically closed field of characteristic $p\geq 0$ (example: $\mathbb{C},\overline{\mathbb{F}}_p)$

Definition

Let X be a smooth algebraic variety of dimension at least two defined over k. A foliation \mathcal{F} of codimension q on X consists in a coherent subsheaf $T_{\mathcal{F}} \subset T_X$ of rank dim X - q that satisfies the following properties:

• $T_{\mathcal{F}}$ is closed under the Lie bracket,

Codimension one foliations over positive characteristic Irreducible components Foliations on algebraic varieties

Foliations on algebraic varieties

 \mathbf{k} = algebraically closed field of characteristic $p\geq 0$ (example: $\mathbb{C},\overline{\mathbb{F}}_p)$

Definition

Let X be a smooth algebraic variety of dimension at least two defined over k. A foliation \mathcal{F} of codimension q on X consists in a coherent subsheaf $T_{\mathcal{F}} \subset T_X$ of rank dim X - q that satisfies the following properties:

- $T_{\mathcal{F}}$ is closed under the Lie bracket,
- $T_{\mathcal{F}}$ is saturated on T_X , i.e, the quotient $T_X/T_{\mathcal{F}}$ is free torsion.

Codimension one foliations over positive characteristic Irreducible components Foliations on algebraic varieties

Foliations on algebraic varieties

 $\mathbf{k} =$ algebraically closed field of characteristic $p \ge 0$ (example: $\mathbb{C}, \overline{\mathbb{F}}_p$)

Definition

Let X be a smooth algebraic variety of dimension at least two defined over k. A foliation \mathcal{F} of codimension q on X consists in a coherent subsheaf $T_{\mathcal{F}} \subset T_X$ of rank dim X - q that satisfies the following properties:

- $T_{\mathcal{F}}$ is closed under the Lie bracket,
- $T_{\mathcal{F}}$ is saturated on T_X , i.e, the quotient $T_X/T_{\mathcal{F}}$ is free torsion.

The singular set of \mathcal{F} is defined by

 $\operatorname{sing}(\mathcal{F}) = \{ x \in X \mid (T_X/T_{\mathcal{F}})_x \text{ is not a free } \mathcal{O}_{X,x} \text{-module} \}.$

Codimension one foliations over positive characteristic Irreducible components Foliations on algebraic varieties

Codimension one foliations (q = 1)

Let \mathcal{F} be a codimension one foliation on X.

• normal sheaf of \mathcal{F} :

$$N_{\mathcal{F}} = (T_X/T_{\mathcal{F}})^{**}$$

• conormal sheaf of \mathcal{F} :

$$\Omega^1_{X/\mathcal{F}} = \{ \omega \in \Omega^1_{X/k} \mid i_v \omega = 0 \quad \forall v \in T_{\mathcal{F}} \} \cong N_{\mathcal{F}}^*$$

Codimension one foliations over positive characteristic Irreducible components Foliations on algebraic varieties

Codimension one foliations (q = 1)

Let \mathcal{F} be a codimension one foliation on X.

• normal sheaf of \mathcal{F} :

$$N_{\mathcal{F}} = (T_X/T_{\mathcal{F}})^{**}$$

• conormal sheaf of \mathcal{F} :

$$\Omega^1_{X/\mathcal{F}} = \{ \omega \in \Omega^1_{X/k} \mid i_v \omega = 0 \quad \forall v \in T_{\mathcal{F}} \} \cong N_{\mathcal{F}}^*$$

The inclusion $N^*_{\mathcal{F}} \subset \Omega^1_{X/k}$ determines a global section

 $0 \neq \omega \in \mathrm{H}^0(X, \Omega^1_{X/k} \otimes N_{\mathcal{F}})$

with zeros of codimension ≥ 2 . Since $T_{\mathcal{F}}$ is stable by the Lie bracket we have the integrability condition: $\omega \wedge d\omega = 0$.

Foliations on algebraic varieties

Codimension one foliations over positive characteristic Irreducible components

Codimension one foliations (q = 1)

Let \mathcal{F} be a codimension one foliation on X.

• normal sheaf of \mathcal{F} :

$$N_{\mathcal{F}} = (T_X/T_{\mathcal{F}})^{**}$$

• conormal sheaf of \mathcal{F} :

$$\Omega^1_{X/\mathcal{F}} = \{ \omega \in \Omega^1_{X/k} \mid i_v \omega = 0 \quad \forall v \in T_{\mathcal{F}} \} \cong N_{\mathcal{F}}^*$$

The inclusion $N^*_{\mathcal{F}} \subset \Omega^1_{X/k}$ determines a global section

$$0 \neq \omega \in \mathrm{H}^0(X, \Omega^1_{X/k} \otimes N_{\mathcal{F}})$$

with zeros of codimension ≥ 2 . Since $T_{\mathcal{F}}$ is stable by the Lie bracket we have the integrability condition: $\omega \wedge d\omega = 0$.

Reciprocally, if ω is a global section of $\Omega^1_{X/k} \otimes \mathcal{I}$ for some invertible sheaf \mathcal{I} , with zeros of codimension at least two and integrable then we get a saturated subsheaf of T_X closed by Lie bracket via the kernel of the contraction map:

$$\gamma_{\omega}: T_X \longrightarrow \mathcal{I}$$

Codimension one foliations over positive characteristic Irreducible components Foliations on algebraic varieties

Codimension one foliation: definition II

Definition

Let \mathcal{I} be a invertible sheaf on X. A codimension one foliation on X with normal sheaf \mathcal{I} is determined by nonzero global section of $\omega \in \mathrm{H}^0(X, \Omega^1_{X/k} \otimes \mathcal{I})$ that satisfies the conditions:

- $\omega \wedge d\omega = 0$,
- $\operatorname{codim} \operatorname{sing}(\omega) \ge 2.$

Codimension one foliations over positive characteristic Irreducible components Foliations on algebraic varieties

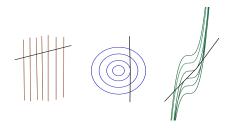
Codimension one foliation: definition II

Definition

Let \mathcal{I} be a invertible sheaf on X. A codimension one foliation on X with normal sheaf \mathcal{I} is determined by nonzero global section of $\omega \in \mathrm{H}^0(X, \Omega^1_{X/k} \otimes \mathcal{I})$ that satisfies the conditions:

- $\omega \wedge d\omega = 0$,
- $\operatorname{codim} \operatorname{sing}(\omega) \ge 2.$

When $X = \mathbb{P}_k^n$ these objects are very explicit, we have the notion of **degree**: the number of tangencies of a generic line in \mathbb{P}_k^n with the foliation.



Foliations on algebraic varieties

Codimension one foliations on projective spaces

Using the Euler exact sequence for projective spaces

$$0 \longrightarrow \Omega^1_{\mathbb{P}^n_k} \longrightarrow \mathcal{O}_{\mathbb{P}^n_k} (-1)^{n+1} \longrightarrow \mathcal{O}_{\mathbb{P}^n_k} \longrightarrow 0$$

we conclude that a codimension one foliation of degree d on \mathbb{P}^n_k is given by a homogeneous 1-form on the affine space \mathbb{A}^{n+1}_k

$$\sigma = A_0 dx_0 + \dots + A_n dx_n$$

Foliations on algebraic varieties

Codimension one foliations on projective spaces

Using the Euler exact sequence for projective spaces

$$0 \longrightarrow \Omega^1_{\mathbb{P}^n_k} \longrightarrow \mathcal{O}_{\mathbb{P}^n_k} (-1)^{n+1} \longrightarrow \mathcal{O}_{\mathbb{P}^n_k} \longrightarrow 0$$

we conclude that a codimension one foliation of degree d on \mathbb{P}^n_k is given by a homogeneous 1-form on the affine space \mathbb{A}^{n+1}_k

$$\sigma = A_0 dx_0 + \dots + A_n dx_n$$

where $A_0 \ldots, A_n \in k[x_0, \ldots, x_n]$ are homogeneous of degree d + 1 and such that $sing(\sigma) = \mathcal{Z}(A_0 \ldots, A_n)$ has codimension ≥ 2 and with σ having the following properties:

$$i_R \sigma = \sum_i A_i x_i = 0$$
 $\sigma \wedge d\sigma = 0.$

Derivations in positive characteristic The Cartier Operator The *p*-distribution and the *p*-divisor The *p*-divisor - surfaces

Codimension one foliations in positive characteristic

- $\mathbf{k} = \text{algebraically closed field of characteristic } p > 0.$
- R = k-domain (example: $R = k[x_1, ..., x_n], k[[x_1, ..., x_n]])$

Codimension one foliations in positive characteristic

- \mathbf{k} = algebraically closed field of characteristic p > 0.
- R = k-domain (example: $R = k[x_1, ..., x_n], k[[x_1, ..., x_n]])$
- Let v, v_1 and v_2 k-derivations of R. Properties:
 - The *p*-iteration of v, v^p , is a k-derivation,

Codimension one foliations in positive characteristic

- \mathbf{k} = algebraically closed field of characteristic p > 0.
- R = k-domain (example: $R = k[x_1, ..., x_n], k[[x_1, ..., x_n]])$

Let v, v_1 and v_2 k-derivations of R. Properties:

- The *p*-iteration of v, v^p , is a k-derivation,
- If v_1, v_2 are k-derivations of R then

$$(v_1 + v_2)^p = v_1^p + v_2^p + \sum_{i=1}^{p-1} s_i(v_1, v_2)$$

with $s_i(v_1, v_2)$ is in the Lie algebra generate by v_1, v_2 ,

Codimension one foliations in positive characteristic

- $\mathbf{k} =$ algebraically closed field of characteristic p > 0.
- R = k-domain (example: $R = k[x_1, ..., x_n], k[[x_1, ..., x_n]])$

Let v, v_1 and v_2 k-derivations of R. Properties:

- The *p*-iteration of v, v^p , is a k-derivation,
- If v_1, v_2 are k-derivations of R then

$$(v_1 + v_2)^p = v_1^p + v_2^p + \sum_{i=1}^{p-1} s_i(v_1, v_2)$$

with s_i(v₁, v₂) is in the Lie algebra generate by v₁, v₂,
For any f ∈ R we have

$$(fv)^p = f^p v^p - fv^{p-1}(f)v.$$

p-closed foliation

Derivations in positive characteristic The Cartier Operator The *p*-distribution and the *p*-divisor The *p*-divisor - surfaces

Let \mathcal{F} be a foliation on a smooth algebraic variety X defined over k.

Definition

We say that \mathcal{F} is p-closed if $T_{\mathcal{F}}$ is closed under the p-powers.

²Brunella, Nicolau - Sur les hypersurfaces solutions des équations de Pfaff

Derivations in positive characteristic The Cartier Operator The *p*-distribution and the *p*-divisor The *p*-divisor - surfaces

p-closed foliation

Let \mathcal{F} be a foliation on a smooth algebraic variety X defined over k.

Definition

We say that \mathcal{F} is p-closed if $T_{\mathcal{F}}$ is closed under the p-powers.

The p-closed foliations are the version in positive characteristic of the class of holomorphic foliations that has meromorphic first integral. In particular:²

²Brunella, Nicolau - Sur les hypersurfaces solutions des équations de Pfaff

Derivations in positive characteristic The Cartier Operator The *p*-distribution and the *p*-divisor The *p*-divisor - surfaces

p-closed foliation

Let \mathcal{F} be a foliation on a smooth algebraic variety X defined over k.

Definition

We say that \mathcal{F} is p-closed if $T_{\mathcal{F}}$ is closed under the p-powers.

The p-closed foliations are the version in positive characteristic of the class of holomorphic foliations that has meromorphic first integral. In particular:²

Theorem (Brunella-Nicolau)

Let X be a smooth projective variety over k and \mathcal{F} be a codimension one foliation. Then, \mathcal{F} is p-closed if and only if there are infinitely many \mathcal{F} -invariant hypersurfaces.

 $^{^2}$ Brunella, Nicolau - Sur les hypersurfaces solutions des équations de Pfaff

Derivations in positive characteristic The Cartier Operator The p-distribution and the p-divisor The p-divisor - surfaces

Example

Example

Let k be an algebraically closed field of characteristic p>0 and ${\cal F}$ the foliation on ${\mathbb A}^2_{\nu}$ defined by the 1-form

$$\omega = ydx - \alpha xdy$$

for some $\alpha \in k^*$. Then, \mathcal{F} is p-closed if and olny if $\alpha \in \mathbb{F}_p$.

First, note that a vector field v is tangent to \mathcal{F} if and only if $v = g \cdot v_1$ for some $g \in k[x, y]$ where $v_1 = \alpha x \partial_x + y \partial_y$, and $v_1^p = \alpha^p x \partial_x + y \partial_y$ is tangent to \mathcal{F} is and only if $\alpha \in \mathbb{F}_p$.

Despite some analogies, some objects behave differently.³

³J.V.Pereira - Invariant hypersurfaces for positive characteristic vector fields

Despite some analogies, some objects behave differently.³

Proposition (J.V.Pereira)

Let \mathcal{F} be a foliation \mathbb{P}^2_k and suppose that $\deg(\mathcal{F}) . Then, <math>\mathcal{F}$ has an invariant algebraic curve.

By a result of Jouanolou for foliations defined over $\mathbb C$ the picture is totally different.

 $^{^3}$ J.V.Pereira - Invariant hypersurfaces for positive characteristic vector fields

Despite some analogies, some objects behave differently.³

Proposition (J.V.Pereira)

Let \mathcal{F} be a foliation \mathbb{P}^2_k and suppose that $\deg(\mathcal{F}) < p-1$. Then, \mathcal{F} has an invariant algebraic curve.

By a result of Jouanolou for foliations defined over $\mathbb C$ the picture is totally different.

Theorem

For every $d \in \mathbb{Z}_{>1}$ the foliation on $\mathbb{P}^2_{\mathbb{C}}$ defined by the vector field

$$v_d = (xy^d - 1)\frac{\partial}{\partial x} - (x^d - y^{d+1})\frac{\partial}{\partial y}$$

has no algebraic solutions.

 $^{^{3}}$ J.V.Pereira - Invariant hypersurfaces for positive characteristic vector fields

Derivations in positive characteristic The Cartier Operator The p-distribution and the p-divisor The p-divisor - surfaces

The Cartier Operator

- ${\ensuremath{\, \rm o}}$ k = algebraically closed field of characteristic p>0
- $R = \text{local regular k-domain which is localization of a k-domain of finite type (example: <math>\mathcal{O}_{X,x}$)
- t_1, \ldots, t_r = a regular system of parameters of R.

Derivations in positive characteristic The Cartier Operator The p-distribution and the p-divisor The p-divisor - surfaces

The Cartier Operator

- ${\ensuremath{\, \rm o}}$ k = algebraically closed field of characteristic p>0
- $R = \text{local regular k-domain which is localization of a k-domain of finite type (example: <math>\mathcal{O}_{X,x}$)
- t_1, \ldots, t_r = a regular system of parameters of R.

From $\{t_1, \ldots, t_t\}$ we get $\{dt_1, \ldots, dt_r\}$ a basis for $\Omega^1_{R/k}$. The ring R is a free R^p -module with base given by all monomials of type $t_1^{a_1} \cdots t_r^{a_r}$ with $0 \le a_i \le p-1$ for all i.

Derivations in positive characteristic The Cartier Operator The p-distribution and the p-divisor The p-divisor - surfaces

The Cartier Operator

- ${\ensuremath{\, \rm o}}$ k = algebraically closed field of characteristic p>0
- $R = \text{local regular k-domain which is localization of a k-domain of finite type (example: <math>\mathcal{O}_{X,x}$)
- t_1, \ldots, t_r = a regular system of parameters of R.

From $\{t_1, \ldots, t_t\}$ we get $\{dt_1, \ldots, dt_r\}$ a basis for $\Omega^1_{R/k}$. The ring R is a free R^p -module with base given by all monomials of type $t_1^{a_1} \cdots t_r^{a_r}$ with $0 \le a_i \le p-1$ for all i.

• closed 1-forms:

$$Z^1_{R/\,\mathbf{k}} = \{\omega \in \Omega^1_{R/\,\mathbf{k}} \mid d\omega = 0\}$$

Derivations in positive characteristic The Cartier Operator The p-distribution and the p-divisor The p-divisor - surfaces

The Cartier Operator

- ${\ensuremath{\, \rm o}}$ k = algebraically closed field of characteristic p>0
- $R = \text{local regular k-domain which is localization of a k-domain of finite type (example: <math>\mathcal{O}_{X,x}$)
- t_1, \ldots, t_r = a regular system of parameters of R.

From $\{t_1, \ldots, t_t\}$ we get $\{dt_1, \ldots, dt_r\}$ a basis for $\Omega^1_{R/k}$. The ring R is a free R^p -module with base given by all monomials of type $t_1^{a_1} \cdots t_r^{a_r}$ with $0 \le a_i \le p-1$ for all i.

• closed 1-forms:

$$Z_{R/k}^1 = \{ \omega \in \Omega_{R/k}^1 \mid d\omega = 0 \}$$

• exact 1-forms:

$$B^1_{R/\mathbf{k}} = \{\omega \in \Omega^1_{R/\mathbf{k}} \mid \omega = dg\}$$

Derivations in positive characteristic The Cartier Operator The p-distribution and the p-divisor The p-divisor - surfaces

The Cartier Operator

- ${\ensuremath{\, \rm o}}$ k = algebraically closed field of characteristic p>0
- $R = \text{local regular k-domain which is localization of a k-domain of finite type (example: <math>\mathcal{O}_{X,x}$)
- t_1, \ldots, t_r = a regular system of parameters of R.

From $\{t_1, \ldots, t_t\}$ we get $\{dt_1, \ldots, dt_r\}$ a basis for $\Omega^1_{R/k}$. The ring R is a free R^p -module with base given by all monomials of type $t_1^{a_1} \cdots t_r^{a_r}$ with $0 \le a_i \le p-1$ for all i.

• closed 1-forms:

$$Z_{R/k}^{1} = \{ \omega \in \Omega_{R/k}^{1} \mid d\omega = 0 \}$$

• exact 1-forms:

$$B^1_{R/k} = \{ \omega \in \Omega^1_{R/k} \mid \omega = dg \}$$

obstruction:

$$H^1_{R/\,{\bf k}}=Z^1_{R/\,{\bf k}}/B^1_{R/\,{\bf k}}$$

Derivations in positive characteristic **The Cartier Operator** The p-divisor distribution and the p-divisor The p-divisor - surfaces

Cartier Operator

Consider the \mathbb{R}^p -module

$$M(t_1,\ldots,t_r) = R^p t_1^{p-1} dt_1 \oplus \cdots \oplus R^p t_r^{p-1} dt_r$$

Proposition

Every element $\sigma \in Z^1_{R/k}$ can be written uniquely as $\sigma = \sigma_1 + \sigma_2$ with $\sigma_1 \in B^1_{R/k}$ and $\sigma_2 \in M(t_1, \ldots, t_r)$.

Derivations in positive characteristic The Cartier Operator The p-distribution and the p-divisor The p-divisor - surfaces

Consider the R^p -module

$$M(t_1,\ldots,t_r) = R^p t_1^{p-1} dt_1 \oplus \cdots \oplus R^p t_r^{p-1} dt_r$$

Proposition

Cartier Operator

Every element $\sigma \in Z^1_{R/k}$ can be written uniquely as $\sigma = \sigma_1 + \sigma_2$ with $\sigma_1 \in B^1_{R/k}$ and $\sigma_2 \in M(t_1, \ldots, t_r)$.

The Cartier Operator is the map

$$\begin{split} \mathbf{C} \colon Z^1_{R/\,\mathbf{k}} &\longrightarrow \Omega^1_{R/\,\mathbf{k}} \\ dg + \sum_{i=1}^r u^p_i t^{p-1}_i dt_i &\mapsto \sum_{i=1}^r u_i dt_i \end{split}$$

Derivations in positive characteristic The Cartier Operator The p-distribution and the p-divisor The p-divisor - surfaces

Fundamental formula

The **Cartier Operator** can be defined in more intrinsic terms as the inverse of the isomorphism⁴

$$\begin{split} \gamma \colon \Omega^1_{R/\,\mathbf{k}} &\longrightarrow Z^1_{R/\,\mathbf{k}} \longrightarrow H^1_{R/\,\mathbf{k}} \\ adt &\mapsto a^p t^{p-1} dt \mapsto [a^p t^{p-1} dt] \end{split}$$

 $^{^4}$ Michel Brion, Shrawan Kumar - Frobenius splitting methods in geometry and representation theory, 1.3.4 Theorem

Derivations in positive characteristic The Cartier Operator The p-distribution and the p-divisor The p-divisor - surfaces

Fundamental formula

The **Cartier Operator** can be defined in more intrinsic terms as the inverse of the isomorphism⁴

$$\begin{split} \gamma \colon \Omega^1_{R/\,\mathbf{k}} &\longrightarrow Z^1_{R/\,\mathbf{k}} &\longrightarrow H^1_{R/\,\mathbf{k}} \\ adt &\mapsto a^p t^{p-1} dt \mapsto [a^p t^{p-1} dt] \end{split}$$

Theorem

Let $\omega \in \Omega^1_{R/k}$ be a closed 1-form and $v \in \text{Der}_k(R)$ be a derivation. Then,

$$i_v C(\omega)^p = i_{v^p}\omega - v^{p-1}(i_v\omega).$$

 $^{^4}$ Michel Brion, Shrawan Kumar - Frobenius splitting methods in geometry and representation theory, 1.3.4 Theorem

Some properties

Derivations in positive characteristic The Cartier Operator The *p*-distribution and the *p*-divisor The *p*-divisor - surfaces

Proposition

^a Let X be a smooth algebraic variety defined over k and denote by $\mathcal{Z}_{X/k}^1$ the subsheaf of $\Omega_{X/k}^1$ which consists of closed 1-forms. There exists a operator, the **Cartier Operator**, $C: \mathcal{Z}_{X/k}^1 \longrightarrow \Omega_{X/k}^1$ determined by the following properties:

Some properties

Derivations in positive characteristic The Cartier Operator The *p*-distribution and the *p*-divisor The *p*-divisor - surfaces

Proposition

^a Let X be a smooth algebraic variety defined over k and denote by Z¹_{X/k} the subsheaf of Ω¹_{X/k} which consists of closed 1-forms. There exists a operator, the Cartier Operator, C: Z¹_{X/k} → Ω¹_{X/k} determined by the following properties:
C(σ₁ + σ₂) = C(σ₁) + C(σ₂),

Some properties

Derivations in positive characteristic The Cartier Operator The p-distribution and the p-divisor The p-divisor - surfaces

Proposition

^a Let X be a smooth algebraic variety defined over k and denote by $\mathcal{Z}_{X/k}^1$ the subsheaf of $\Omega_{X/k}^1$ which consists of closed 1-forms. There exists a operator, the **Cartier Operator**, $C: \mathcal{Z}_{X/k}^1 \longrightarrow \Omega_{X/k}^1$ determined by the following properties:

- $C(\sigma_1 + \sigma_2) = C(\sigma_1) + C(\sigma_2),$

Some properties

Derivations in positive characteristic The Cartier Operator The p-distribution and the p-divisor The p-divisor - surfaces

Proposition

^a Let X be a smooth algebraic variety defined over k and denote by $\mathcal{Z}_{X/k}^1$ the subsheaf of $\Omega_{X/k}^1$ which consists of closed 1-forms. There exists a operator, the **Cartier Operator**, $C: \mathcal{Z}_{X/k}^1 \longrightarrow \Omega_{X/k}^1$ determined by the following properties:

 $C(\sigma_1 + \sigma_2) = C(\sigma_1) + C(\sigma_2),$

$$C(df) = 0,$$

Some properties

Derivations in positive characteristic The Cartier Operator The p-distribution and the p-divisor The p-divisor - surfaces

Proposition

^a Let X be a smooth algebraic variety defined over k and denote by $\mathcal{Z}_{X/k}^1$ the subsheaf of $\Omega_{X/k}^1$ which consists of closed 1-forms. There exists a operator, the **Cartier Operator**, $C: \mathcal{Z}_{X/k}^1 \longrightarrow \Omega_{X/k}^1$ determined by the following properties:

- $C(\sigma_1 + \sigma_2) = C(\sigma_1) + C(\sigma_2),$

$$C(f^{p-1}df) = df$$

Some properties

Derivations in positive characteristic The Cartier Operator The p-distribution and the p-divisor The p-divisor - surfaces

Proposition

^a Let X be a smooth algebraic variety defined over k and denote by $\mathcal{Z}_{X/k}^1$ the subsheaf of $\Omega_{X/k}^1$ which consists of closed 1-forms. There exists a operator, the **Cartier Operator**, $C: \mathcal{Z}_{X/k}^1 \longrightarrow \Omega_{X/k}^1$ determined by the following properties:

- $C(\sigma_1 + \sigma_2) = C(\sigma_1) + C(\sigma_2),$

$$C(f^{p-1}df) = df_{f}$$

 $C(\frac{df}{f}) = \frac{df}{f}$

for any local sections $f \in \mathcal{O}_X$, $\sigma_1, \sigma_2 \in \mathcal{Z}^1_{X/k}$.

^aSeshadr - L'opération de Cartier

The non-p-closed foliations and the p-distribution

- X = smooth algebraic variety of dimension ≥ 2 defined over k
- $\mathcal{F} =$ codimension one foliation non-*p*-closed on X

The non-p-closed foliations and the p-distribution

- X = smooth algebraic variety of dimension ≥ 2 defined over ${\bf k}$
- $\mathcal{F} = \text{codimension one foliation non-}p\text{-closed on } X$

Theorem (D. Cerveau, A. Lins Neto, F. Loray, J.V. Pereira, F. Touzet)

Let ω be a rational 1-form. Suppose that ω is integrable and that v is a rational vector field such that $i_v \omega = 0$. If $f = i_{v_p} \omega \neq 0$ then $d(f^{p-1}\omega) = 0$.^a

 a Complex codimension one singular foliations and Godbillon-Vey sequences

The non-p-closed foliations and the p-distribution

- X = smooth algebraic variety of dimension ≥ 2 defined over ${\bf k}$
- $\mathcal{F} = \text{codimension one foliation non-}p\text{-closed on } X$

Theorem (D. Cerveau, A. Lins Neto, F. Loray, J.V. Pereira, F. Touzet)

Let ω be a rational 1-form. Suppose that ω is integrable and that v is a rational vector field such that $i_v \omega = 0$. If $f = i_{v_p} \omega \neq 0$ then $d(f^{p-1}\omega) = 0$.^a

 a Complex codimension one singular foliations and Godbillon-Vey sequences

Let ω be a closed 1-form defining \mathcal{F} . Consider the subsheaf $T_{\mathcal{C}_{\mathcal{F}}}$ of $T_{\mathcal{F}}$ defining by

$$T_{\mathcal{C}_{\mathcal{F}}} = \{ v \in T_{\mathcal{F}} \mid i_v \mathbf{C}(\omega) = 0 \}$$
(1)

where \mathbf{C} is the Cartier Operator.

Derivations in positive characteristic The Cartier Operator The p-distribution and the p-divisor The p-divisor - surfaces

The *p*-curvature morphism

$$T_{\mathcal{C}_{\mathcal{F}}} = \{ v \in T_{\mathcal{F}} \mid i_v \mathbf{C}(\omega) = 0 \}$$
(2)

By the Cartier Operator properties it follows that $T_{\mathcal{C}_{\mathcal{F}}}$ is independent of the closed 1-form defining \mathcal{F} and is a saturated subsheaf of T_X .

Derivations in positive characteristic The Cartier Operator The p-distribution and the p-divisor The p-divisor - surfaces

The *p*-curvature morphism

$$T_{\mathcal{C}_{\mathcal{F}}} = \{ v \in T_{\mathcal{F}} \mid i_v \mathbf{C}(\omega) = 0 \}$$
(2)

By the Cartier Operator properties it follows that $T_{\mathcal{C}_{\mathcal{F}}}$ is independent of the closed 1-form defining \mathcal{F} and is a saturated subsheaf of T_X .

Definition

Let \mathcal{F} be a codimension one foliation non-p-closed on X. The p-distribution associated to \mathcal{F} is the distribution defined by the sheaf $T_{\mathcal{C}_{\mathcal{F}}}$.

Derivations in positive characteristic The Cartier Operator The p-distribution and the p-divisor The p-divisor - surfaces

The *p*-curvature morphism

$$T_{\mathcal{C}_{\mathcal{F}}} = \{ v \in T_{\mathcal{F}} \mid i_v \mathbf{C}(\omega) = 0 \}$$
(2)

By the Cartier Operator properties it follows that $T_{\mathcal{C}_{\mathcal{F}}}$ is independent of the closed 1-form defining \mathcal{F} and is a saturated subsheaf of T_X .

Definition

Let \mathcal{F} be a codimension one foliation non-p-closed on X. The p-distribution associated to \mathcal{F} is the distribution defined by the sheaf $T_{\mathcal{C}_{\mathcal{F}}}$.

Example

The fundamental formula implies that if dim X = 2 then $T_{\mathcal{C}_{\mathcal{F}}}$ is the null sheaf. Indeed, given $v \in T_{\mathcal{F}}$ we have $0 \neq i_{v^p} \omega = i_v C(\omega)^p$.

Derivations in positive characteristic The Cartier Operator The p-distribution and the p-divisor The p-divisor - surfaces

The *p*-curvature morphism

$$T_{\mathcal{C}_{\mathcal{F}}} = \{ v \in T_{\mathcal{F}} \mid i_v \mathbf{C}(\omega) = 0 \}$$
(2)

By the Cartier Operator properties it follows that $T_{\mathcal{C}_{\mathcal{F}}}$ is independent of the closed 1-form defining \mathcal{F} and is a saturated subsheaf of T_X .

Definition

Let \mathcal{F} be a codimension one foliation non-p-closed on X. The p-distribution associated to \mathcal{F} is the distribution defined by the sheaf $T_{\mathcal{C}_{\mathcal{F}}}$.

Example

The fundamental formula implies that if dim X = 2 then $T_{\mathcal{C}_{\mathcal{F}}}$ is the null sheaf. Indeed, given $v \in T_{\mathcal{F}}$ we have $0 \neq i_{v^p} \omega = i_v C(\omega)^p$.

Consider the following morphism of sets sheafs

$$\psi_{\mathcal{F}} \colon T_{\mathcal{F}} \longrightarrow \frac{T_X}{T_{\mathcal{F}}}$$

which associates $v \mapsto v^p \mod T_{\mathcal{F}}$.

Derivations in positive characteristic The Cartier Operator The p-distribution and the p-divisor The p-divisor - surfaces

The *p*-curvature morphism and Frobenius

The properties of derivations over positive characteristic implies that $\psi_{\mathcal{F}}$ is a group morphism.

Derivations in positive characteristic The Cartier Operator The *p*-distribution and the *p*-divisor The *p*-divisor - surfaces

The *p*-curvature morphism and Frobenius

The properties of derivations over positive characteristic implies that $\psi_{\mathcal{F}}$ is a group morphism.

Definition

The *p*-curvature morphism associated to \mathcal{F} is the \mathcal{O}_X -morphism:

$$\begin{split} \varphi_{\mathcal{F}} \colon F_X^* T_{\mathcal{F}} &\longrightarrow N_{\mathcal{F}} \\ \sum_i f_i \otimes v_i &\mapsto \sum_i f_i v_i^p \end{split}$$

Derivations in positive characteristic The Cartier Operator The p-distribution and the p-divisor The p-divisor - surfaces

The *p*-curvature morphism and Frobenius

The properties of derivations over positive characteristic implies that $\psi_{\mathcal{F}}$ is a group morphism.

Definition

The *p*-curvature morphism associated to \mathcal{F} is the \mathcal{O}_X -morphism:

$$\begin{split} \varphi_{\mathcal{F}} \colon F_X^* T_{\mathcal{F}} &\longrightarrow N_{\mathcal{F}} \\ \sum_i f_i \otimes v_i &\mapsto \sum_i f_i v_i^p \end{split}$$

In the conditions above, the foliation \mathcal{F} is *p*-closed if and only if $\varphi_{\mathcal{F}} \equiv 0$.

Derivations in positive characteristic The Cartier Operator The *p*-distribution and the *p*-divisor The *p*-divisor - surfaces

The *p*-curvature morphism and Frobenius

The properties of derivations over positive characteristic implies that $\psi_{\mathcal{F}}$ is a group morphism.

Definition

The *p*-curvature morphism associated to \mathcal{F} is the \mathcal{O}_X -morphism:

$$\begin{split} \varphi_{\mathcal{F}} \colon F_X^* T_{\mathcal{F}} &\longrightarrow N_{\mathcal{F}} \\ \sum_i f_i \otimes v_i &\mapsto \sum_i f_i v_i^p \end{split}$$

In the conditions above, the foliation \mathcal{F} is *p*-closed if and only if $\varphi_{\mathcal{F}} \equiv 0$.

Recall: The **absolute Frobenius** morphism, denoted by F_X , consists in the morphism that is the identity on topological spaces and is the *p*-power on functions

$$F_X = (f, f^{\#}) : (X, \mathcal{O}_X) \longrightarrow (X, \mathcal{O}_X)$$

where f = id and $f^{\#} : a \mapsto a^p$.

Derivations in positive characteristic The Cartier Operator The p-distribution and the p-divisor The p-divisor - surfaces

The *p*-curvature

Consider the *p*-curvature morphism

$$\varphi_{\mathcal{F}} \colon F_X^* T_{\mathcal{F}} \longrightarrow N_{\mathcal{F}}$$
$$\sum_i f_i \otimes v_i \mapsto \sum_i f_i v_i^p$$

Derivations in positive characteristic The Cartier Operator The p-distribution and the p-divisor The p-divisor - surfaces

The *p*-curvature

Consider the *p*-curvature morphism

$$\begin{split} \rho_{\mathcal{F}} \colon F_X^* T_{\mathcal{F}} &\longrightarrow N_{\mathcal{F}} \\ \sum_i f_i \otimes v_i &\mapsto \sum_i f_i v_i^p \end{split}$$

Proposition

We have $\operatorname{Ker}(\varphi_{\mathcal{F}}) = F_X^* T_{\mathcal{C}_{\mathcal{F}}}$ where F_X is the absolute Frobenius morphism and there exists a effective divisor $\Delta_{\mathcal{F}} \in \operatorname{Div}(X)$ such that the sequence

$$0 \longrightarrow F_X^* T_{\mathcal{C}_{\mathcal{F}}} \longrightarrow F_X^* T_{\mathcal{F}} \longrightarrow N_{\mathcal{F}} \otimes_{\mathcal{O}_X} \mathcal{O}_X(-\Delta_{\mathcal{F}}) \longrightarrow 0$$

is exact in codimension one, i.e., exact outside a closed set of codimension ≥ 2 .

Derivations in positive characteristic The Cartier Operator **The p-distribution and the p-divisor** The p-divisor - surfaces

The p-distribution and the p-divisor

Definition

Let \mathcal{F} be a foliation that is not p-closed on X. The p-distribution associated to \mathcal{F} is the subsheaf of T_X defined by $T_{\mathcal{C}_{\mathcal{F}}}$. The p-divisor of \mathcal{F} is the divisor $\Delta_{\mathcal{F}}$.

An interesting property of the p-divisor consists of the following proposition.

Derivations in positive characteristic The Cartier Operator **The p-distribution and the p-divisor** The p-divisor - surfaces

The p-distribution and the p-divisor

Definition

Let \mathcal{F} be a foliation that is not p-closed on X. The **p-distribution** associated to \mathcal{F} is the subsheaf of T_X defined by $T_{\mathcal{C}_{\mathcal{F}}}$. The p-divisor of \mathcal{F} is the divisor $\Delta_{\mathcal{F}}$.

An interesting property of the p-divisor consists of the following proposition.

Proposition

Let X be a smooth variety over k and \mathcal{F} be a foliation on X that is not p-closed. Let H be an irreducible hypersurface on X. If H is \mathcal{F} -invariant then $\operatorname{ord}_{H}(\Delta_{\mathcal{F}}) > 0$. Reciprocally, if $\operatorname{ord}_{H}(\Delta_{\mathcal{F}}) \not\equiv 0 \mod p$ then H is \mathcal{F} -invariant.

Derivations in positive characteristic The Cartier Operator **The p-distribution and the p-divisor** The p-divisor - surfaces

Some consequences

Proposition

Let \mathcal{F} be a codimension one foliation on a smooth projective variety X of dimension ≥ 2 defined over k. Suppose that \mathcal{F} is not p-closed. Then,

$$\mathcal{O}_X(\Delta_{\mathcal{F}}) = \omega_{\mathcal{F}}^{\otimes p} \otimes (\omega_{\mathcal{C}_{\mathcal{F}}}^*)^{\otimes p} \otimes N_{\mathcal{F}}$$

in the group $\operatorname{Pic}(X)$.

Derivations in positive characteristic The Cartier Operator The p-distribution and the p-divisor The p-divisor - surfaces

Some consequences

Proposition

Let \mathcal{F} be a codimension one foliation on a smooth projective variety X of dimension ≥ 2 defined over k. Suppose that \mathcal{F} is not p-closed. Then,

$$\mathcal{O}_X(\Delta_\mathcal{F}) = \omega_\mathcal{F}^{\otimes p} \otimes (\omega_{\mathcal{C}_\mathcal{F}}^*)^{\otimes p} \otimes N_\mathcal{F}$$

in the group $\operatorname{Pic}(X)$.

When $X = \mathbb{P}_{k}^{n}$ the proposition above implies the following **degree formula:**

$$\deg(\Delta_{\mathcal{F}}) = p(d - \deg(\mathcal{C}_{\mathcal{F}}) - 1) + d + 2$$
(3)

Derivations in positive characteristic The Cartier Operator **The p-distribution and the p-divisor** The p-divisor - surfaces

The p-divisor and properties

Proposition

Let \mathcal{F} be a codimension one foliation on \mathbb{P}^n_k such that $p \nmid \deg(N_{\mathcal{F}})$. Then, \mathcal{F} admits an invariant hypersurface.

Derivations in positive characteristic The Cartier Operator **The p-distribution and the p-divisor** The p-divisor - surfaces

The p-divisor and properties

Proposition

Let \mathcal{F} be a codimension one foliation on \mathbb{P}^n_k such that $p \nmid \deg(N_{\mathcal{F}})$. Then, \mathcal{F} admits an invariant hypersurface.

Demonstração.

If \mathcal{F} is *p*-closed then \mathcal{F} admits infinitely many solutions. So, we can assume that \mathcal{F} is not *p*-closed. Since $p \nmid \deg(N_{\mathcal{F}})$, it follows from degree formula that $\deg(\Delta_{\mathcal{F}}) \not\equiv 0 \mod p$. In particular, $\Delta_{\mathcal{F}}$ is not a *p*-factor and there is a prime divisor H in the support of $\Delta_{\mathcal{F}}$ such that $\operatorname{ord}_{H}(\Delta_{\mathcal{F}}) \not\equiv 0 \mod p$. This divisor defines a \mathcal{F} -invariant hypersurface.

Example - Foliations on surfaces and the *p*-divisor

Let X be a projective smooth surface defined over k. A foliation on X can be defined by a system $\{(U_i, \omega_i, v_i)\}_{i \in I}$ such that:

- $\{U_i\}_{i \in I}$ is a open cover of X.
- For each $i \in I$ we have $v_i \in T_X(U_i)$, $\omega_i \in \Omega^1_{X/k}(U_i)$ such that $i_{v_i}\omega_i = 0$.
- In $U_i \cap U_j$ we have $\omega_i = f_{ij}\omega_j$ and $v_i = g_{ij}v_j$ for some functions $f_{ij}, g_{ij} \in \mathcal{O}_X^*(U_{ij}).$
- For each $i \in I$ we have $\operatorname{codim}(\omega_i) \ge 2$ and $\operatorname{codim}(v_i) \ge 2$.

Example - Foliations on surfaces and the p-divisor

Let X be a projective smooth surface defined over k. A foliation on X can be defined by a system $\{(U_i, \omega_i, v_i)\}_{i \in I}$ such that:

- $\{U_i\}_{i \in I}$ is a open cover of X.
- For each $i \in I$ we have $v_i \in T_X(U_i)$, $\omega_i \in \Omega^1_{X/k}(U_i)$ such that $i_{v_i}\omega_i = 0$.
- In $U_i \cap U_j$ we have $\omega_i = f_{ij}\omega_j$ and $v_i = g_{ij}v_j$ for some functions $f_{ij}, g_{ij} \in \mathcal{O}_X^*(U_{ij}).$
- For each $i \in I$ we have $\operatorname{codim}(\omega_i) \ge 2$ and $\operatorname{codim}(v_i) \ge 2$.

The collection $\{f_{ij}^{-1}\}, \{g_{ij}\}$ define elements of $H^1(X, \mathcal{O}_X^*) = \operatorname{Pic}(X)$ and the line bundles associated are the **conormal** $\Omega^1_{X/\mathcal{F}}$ and the **cotangent** $\Omega^1_{\mathcal{F}}$ bundles. Any divisor in the linear class of $\Omega^1_{\mathcal{F}}$ is called the **canonical divisor** of \mathcal{F} and it denoted by $K_{\mathcal{F}}$.

Explicit construction of the *p*-divisor

Let $\mathcal{F}=\{(U_i,\omega_i,v_i)\}$ be a foliation on X that is not p-closed. In U_{ij} we have relations:

$$\omega_i = f_{ij}\omega_j \qquad \quad v_i = g_{ij}v_j.$$

Since we are assuming that \mathcal{F} is not *p*-closed:

$$0 \neq i_{v_{i}^{p}}\omega_{i} = i_{(g_{ij}v_{j})^{p}}f_{ij}\omega_{j} = i_{(g_{ij}^{p}v_{j}^{p} + g_{ij}v_{j}^{p-1}(g_{ij}^{p-1})v_{j})}f_{ij}\omega_{j} = g_{ij}^{p}f_{ij}i_{v_{j}^{p}}\omega_{j} \neq 0.$$

The $\{i_{v_i}^p \omega_i\}_{i \in I}$ defines a section $0 \neq s_{\mathcal{F}} \in \mathrm{H}^0(X, (\Omega^1_{\mathcal{F}})^{\otimes p} \otimes N_{\mathcal{F}}).$

Remark

The p-divisor associated to \mathcal{F} is the zero divisor of the section $s_{\mathcal{F}}$:

 $\Delta_{\mathcal{F}} = (s_{\mathcal{F}})_0 \in \operatorname{Div}(X).$

Introdution Codimension one foliations over positive characteristic Irreducible components The p-divisor - surfaces

The *p*-divisor and properties: example I

Proposition

Let \mathcal{F} be a non-dicritical foliation on $\mathbb{P}^2_{\mathbb{C}}$ defined by a projective 1-form

 $\Omega = Adx + Bdy + Cdz.$

Suppose that $A, B, C \in \mathbb{Z}[x, y, z]_{d+1}$ and let $p\mathbb{Z} \in Spm(\mathbb{Z})$ be a maximal ideal such that p > d+2. Let \mathcal{F}_p be a foliation on $\mathbb{P}^2_{\mathbb{F}_p}$ obtained by reduction modulo $p\mathbb{Z}$ of the coefficients of Ω . If $\Delta_{\mathcal{F}_p}$ is irreducible then \mathcal{F} has no algebraic solutions.

 $^{^{5}}$ Carnicer - The Poincaré problem in the nondicritical case

Introdution Codimension one foliations over positive characteristic Irreducible components Irreducible components

The *p*-divisor and properties: example I

Proposition

Let \mathcal{F} be a non-dicritical foliation on $\mathbb{P}^2_{\mathbb{C}}$ defined by a projective 1-form

 $\Omega = Adx + Bdy + Cdz.$

Suppose that $A, B, C \in \mathbb{Z}[x, y, z]_{d+1}$ and let $p\mathbb{Z} \in Spm(\mathbb{Z})$ be a maximal ideal such that p > d+2. Let \mathcal{F}_p be a foliation on $\mathbb{P}^2_{\mathbb{F}_p}$ obtained by reduction modulo $p\mathbb{Z}$ of the coefficients of Ω . If $\Delta_{\mathcal{F}_p}$ is irreducible then \mathcal{F} has no algebraic solutions.

This can be used to give a simple proof of Jouanolou's Theorem which says that almost all foliations in the complex projective plane of degree $d \in \{2, 3\}$ have no algebraic solutions. The crucial point is the bound for the degree of algebraic solutions given by Carnicer.⁵

 $^{^{5}}$ Carnicer - The Poincaré problem in the nondicritical case

Introdution Codimension one foliations over positive characteristic Irreducible components	Derivations in positive characteristic The Cartier Operator The p -distribution and the p -divisor The p -divisor - surfaces
--	--

Example

•
$$\mathcal{F}_d$$
 on $\mathbb{P}^2_{\mathbb{C}}$:⁶
 $\omega_d = (x^d z - y^{d+1})dx + (xy^d - z^{d+1})dy + (z^d y - x^{d+1})dz$
 $v_d = z^d \partial_x + x^d \partial_y + y^d \partial_z$
• $(p, d) = (5, 2):$
 $\Delta_{\mathcal{F}_{5,2}} = [i_{v_2^5}\omega_2] = \{X^5 Z^4 + X^4 Y^5 + 2X^3 Y^3 Z^3 + Y^4 Z^5 = 0\} \in \operatorname{Div}(\mathbb{P}^2_{\overline{\mathbb{F}}_5})$
• $(p, d) = (11, 3):$
 $\Delta_{\mathcal{F}_{11,3}} = [i_{v_3^{11}}\omega_3] = \{X^{19} Z^8 - 2X^{16} Y^4 Z^7 + \dots + 3XY^{11} Z^{15} + Y^8 Z^{19} = 0\} \in \operatorname{Div}(\mathbb{P}^2_{\overline{\mathbb{F}}_{11}})$

⁶Singular: https://www.singular.uni-kl.de/

Derivations in positive characteristic The Cartier Operator The *p*-distribution and the *p*-divisor **The** *p***-divisor - surfaces**

The *p*-divisor on \mathbb{P}^2_k and $\mathbb{P}^1_k \times \mathbb{P}^1_k$

Problem

Let X be a smooth algebraic surface. What we can say about $\Delta_{\mathcal{F}}$ for a generic foliation \mathcal{F} ?

 $^{^7\}mathrm{W.Mendson}$ - Foliations on smooth algebraic surfaces over positive characteristic

Derivations in positive characteristic The Cartier Operator The *p*-distribution and the *p*-divisor **The** *p***-divisor - surfaces**

The *p*-divisor on \mathbb{P}^2_k and $\mathbb{P}^1_k \times \mathbb{P}^1_k$

Problem

Let X be a smooth algebraic surface. What we can say about $\Delta_{\mathcal{F}}$ for a generic foliation \mathcal{F} ?

• Is it true that almost all foliations on \mathbb{P}^2_k have reduced *p*-divisor? Irreducible?

 $^{^7\}mathrm{W.Mendson}$ - Foliations on smooth algebraic surfaces over positive characteristic

Derivations in positive characteristic The Cartier Operator The *p*-distribution and the *p*-divisor **The** *p***-divisor - surfaces**

The *p*-divisor on \mathbb{P}^2_k and $\mathbb{P}^1_k \times \mathbb{P}^1_k$

Problem

Let X be a smooth algebraic surface. What we can say about $\Delta_{\mathcal{F}}$ for a generic foliation \mathcal{F} ?

• Is it true that almost all foliations on \mathbb{P}^2_k have reduced *p*-divisor? Irreducible?

In this direction 7 .

Theorem

Let $d_1, d_2 \in \mathbb{Z}_{>0}$ such that $p \nmid d_i$, if $d_i \neq 0$. Then,

 $^{^7\}mathrm{W.Mendson}$ - Foliations on smooth algebraic surfaces over positive characteristic

Derivations in positive characteristic The Cartier Operator The *p*-distribution and the *p*-divisor **The** *p***-divisor - surfaces**

The *p*-divisor on \mathbb{P}^2_k and $\mathbb{P}^1_k \times \mathbb{P}^1_k$

Problem

Let X be a smooth algebraic surface. What we can say about $\Delta_{\mathcal{F}}$ for a generic foliation \mathcal{F} ?

• Is it true that almost all foliations on \mathbb{P}^2_k have reduced *p*-divisor? Irreducible?

In this direction 7 .

Theorem

Let $d_1, d_2 \in \mathbb{Z}_{\geq 0}$ such that $p \nmid d_i$, if $d_i \neq 0$. Then,

• A generic foliation on \mathbb{P}^2_k of degree $d \ge 1$ $(p \nmid d)$ has reduced p-divisor, and

⁷W.Mendson - Foliations on smooth algebraic surfaces over positive characteristic

Derivations in positive characteristic The Cartier Operator The *p*-distribution and the *p*-divisor **The** *p***-divisor - surfaces**

The *p*-divisor on \mathbb{P}^2_k and $\mathbb{P}^1_k \times \mathbb{P}^1_k$

Problem

Let X be a smooth algebraic surface. What we can say about $\Delta_{\mathcal{F}}$ for a generic foliation $\mathcal{F}?$

• Is it true that almost all foliations on \mathbb{P}^2_k have reduced *p*-divisor? Irreducible?

In this direction 7 .

Theorem

Let $d_1, d_2 \in \mathbb{Z}_{>0}$ such that $p \nmid d_i$, if $d_i \neq 0$. Then,

- A generic foliation on \mathbb{P}^2_k of degree $d \ge 1$ $(p \nmid d)$ has reduced p-divisor, and
- A generic foliation on $\mathbb{P}^1_k \times \mathbb{P}^1_k$ with canonical divisor $K \equiv d_1F + d_2M$ has reduced p-divisor.

 $^{^{7}}$ W.Mendson - Foliations on smooth algebraic surfaces over positive characteristic

Derivations in positive characteristic The Cartier Operator The *p*-distribution and the *p*-divisor **The** *p***-divisor - surfaces**

Foliation of type (d_1, d_2) on $\mathbb{P}^1_k \times \mathbb{P}^1_k$

We say that a foliation on $\mathbb{P}^1_k \times \mathbb{P}^1_k$ is of type (d_1, d_2) if it has canonical divisor of bi-degree (d_1, d_2) . The list of all possibilities is the region:⁸

$$S_0 = \{ (d_1, d_2) \in \mathbb{Z}^2 \mid d_1, d_2 \ge 0 \} \cup \{ (-2, 0) \} \cup \{ (0, -2) \}.$$

 $^{^{8}\}mathrm{Carlos}$ Galindo, Francisco Monserrat, Jorge Olivares - Foliations with isolated singularities on Hirzebruch surfaces

Applications: codimension one foliation on projective spaces

A codimension one foliation of degree d on \mathbb{P}^n_k is given by a homogeneous 1-form on \mathbb{A}^{n+1}_k

$$\sigma = A_0 dx_0 + \dots + A_n dx_n$$

where $A_0 \ldots, A_n \in k[x_0, \ldots, x_n]$ are homogeneous polynomials of degree d + 1 and such that $sing(\sigma) = \mathcal{Z}(A_0 \ldots, A_n)$ has codimension ≥ 2 with σ satisfying the following conditions

$$i_R \sigma = \sum_i A_i x_i = 0 \qquad \sigma \wedge d\sigma = 0.$$

Codimension one foliations on projective spaces

The integrability condition gives equations:

$$A_i\left(\frac{\partial A_l}{\partial x_j} - \frac{\partial A_j}{\partial x_l}\right) + A_j\left(\frac{\partial A_i}{\partial x_l} - \frac{\partial A_l}{\partial x_i}\right) + A_l\left(\frac{\partial A_j}{\partial x_i} - \frac{\partial A_i}{\partial x_j}\right) = 0$$

for $0 \le i < j < l \le n$.

Codimension one foliations on projective spaces

The integrability condition gives equations:

$$A_i\left(\frac{\partial A_l}{\partial x_j} - \frac{\partial A_j}{\partial x_l}\right) + A_j\left(\frac{\partial A_i}{\partial x_l} - \frac{\partial A_l}{\partial x_i}\right) + A_l\left(\frac{\partial A_j}{\partial x_i} - \frac{\partial A_i}{\partial x_j}\right) = 0$$

for $0 \leq i < j < l \leq n$.

The space of codimension one foliations of degree $d \geq 0$ on $\mathbb{P}^n_k \ (n \geq 2)$ is denoted by

 $\mathbb{F}ol_{d}(\mathbb{P}^{n}_{k}) = \{ [\omega] \in \mathbb{P}(\mathrm{H}^{0}(\mathbb{P}^{n}_{k}, \Omega^{1}_{\mathbb{P}^{n}_{k}} \otimes \mathcal{O}_{\mathbb{P}^{n}_{k}}(d+2))) \mid \omega \wedge d\omega = 0 \text{ and } \operatorname{codim} \operatorname{sing}(\omega) \geq 2 \}$

Problem

Describe the irreducible components of $\mathbb{F}ol_{d}(\mathbb{P}^{n}_{\mathbb{C}})$.

Some irreducible components New irreducible components

Some components $\mathbb{F}ol_d(\mathbb{P}^n_{\mathbb{C}})(n \geq 3)$

Degree 0 and 1: Fol₀(Pⁿ_ℂ) is irreducible and for d = 1 the space Fol_d(Pⁿ_ℂ) has two irreducible components⁹.

 $^{^9 {\}rm Alcides}$ Lins Neto - Componentes irredutíveis dos espaços de folheações

 $^{^{10}}$ Irreducible components of the space of holomorphic foliations of degree two in ${f CP}(n)$

 $^{^{11}}$ Codimension one foliations of degree three on projective spaces

Some components $\mathbb{F}ol_{d}(\mathbb{P}^{n}_{\mathbb{C}})(n \geq 3)$

- Degree 0 and 1: Fol₀(Pⁿ_ℂ) is irreducible and for d = 1 the space Fol_d(Pⁿ_ℂ) has two irreducible components⁹.
- **Degree 2**: For codimension one foliations with degree d = 2 on $\mathbb{P}^n_{\mathbb{C}}$ Cerveau and Alcides Lins Neto showed¹⁰ that $\mathbb{F}ol_d(\mathbb{P}^n_{\mathbb{C}})$ has precisely six irreducible components and they describe explicitly those components.

 $^{^9 {\}rm Alcides}$ Lins Neto - Componentes irredutíveis dos espaços de folheações

 $^{^{10}}$ Irreducible components of the space of holomorphic foliations of degree two in ${
m CP}(n)$

 $^{^{11}}$ Codimension one foliations of degree three on projective spaces

Some components $\mathbb{F}ol_{d}(\mathbb{P}^{n}_{\mathbb{C}})(n \geq 3)$

- Degree 0 and 1: Fol₀(Pⁿ_ℂ) is irreducible and for d = 1 the space Fol_d(Pⁿ_ℂ) has two irreducible components⁹.
- **Degree 2**: For codimension one foliations with degree d = 2 on $\mathbb{P}^n_{\mathbb{C}}$ Cerveau and Alcides Lins Neto showed¹⁰ that $\mathbb{F}ol_d(\mathbb{P}^n_{\mathbb{C}})$ has precisely six irreducible components and they describe explicitly those components.
- Degree 3: In a recent work¹¹, R.C. da Costa, R. Lizarbe and J.V Pereira, using a structure theorem for codimension one foliations of degree d = 3 on

 Pⁿ_C describe precisely 18 irreducible components of Fol_d(Pⁿ_C) whose the generic element has no meromorphic first integral. The authors show that Fol₃(Pⁿ_C) has at least 24 irreducible components.

 $^{^9\}mathrm{Alcides}\ \mathrm{Lins}\ \mathrm{Neto}$ - Componentes irredutíveis dos espaços de folheações

 $^{^{10}}$ Irreducible components of the space of holomorphic foliations of degree two in ${f CP}(n)$

¹¹Codimension one foliations of degree three on projective spaces

Components of degree $d \ge 3$

Rational components: Let F, G be irreducible homogeneous polynomials of degree p and q respectively. Suppose that F and G are coprime and that d = p + q - 2. Then, ω = qFdG - pGdF defines a foliation on Pⁿ_C of degree d. Denote by Rat(p,q) the set of foliations of this type. Then, the closure Rat(p,q) is an irreducible component of Fol_d(Pⁿ_C)¹².

¹²Gómez-Mont, Lins Neto - Structural stability of foliations with a meromorphic first integral ¹³Cerveau, Lins Neto and Edixhoven - Pull-back components of the space of holomorphic foliations on $\mathbb{CP}(n)$, n > 3

Components of degree $d \ge 3$

- Rational components: Let F, G be irreducible homogeneous polynomials of degree p and q respectively. Suppose that F and G are coprime and that d = p + q 2. Then, ω = qFdG pGdF defines a foliation on Pⁿ_C of degree d. Denote by Rat(p,q) the set of foliations of this type. Then, the closure Rat(p,q) is an irreducible component of Fol_d(Pⁿ_C)¹².

¹²Gómez-Mont, Lins Neto - Structural stability of foliations with a meromorphic first integral ¹³Cerveau, Lins Neto and Edixhoven - Pull-back components of the space of holomorphic foliations on $\mathbb{CP}(n)$, $n \geq 3$

Components of degree $d \ge 3$

• Logarithmic components: Let $d_1, d_2, \ldots, d_r \in \mathbb{Z}_{>0}$ and F_1, \ldots, F_r homogeneous polynomials with $d_i = \deg(F_i)$. Suppose that F_1, \ldots, F_r are irreducible and coprime. Let $\alpha_1, \ldots, \alpha_r \in \mathbb{C}^*$ such that $\sum_{i=1}^r \alpha_i d_i = 0$ and consider the 1-form

$$\Omega = F_1 F_2 \cdots F_{r-1} F_r \sum_{i=1}^r \alpha_i \frac{dF_i}{F_i}.$$

The 1-form Ω defines a \mathcal{F}_{Ω} codimension one foliation of degree $d = \sum_{i} d_{i} - 2$ on $\mathbb{P}^{n}_{\mathbb{C}}$. We say that \mathcal{F}_{Ω} is a **logarithmic foliation** of type (d_{1}, \ldots, d_{r}) . Denote by $\mathrm{Log}_{n}(d_{1}, \ldots, d_{r})$ the set of logarithmic foliations on $\mathbb{P}^{n}_{\mathbb{C}}$ of type (d_{1}, \ldots, d_{r}) . Then, the closure $\overline{\mathrm{Log}_{n}(d_{1}, \ldots, d_{r})}$ is an irreducible component of $\mathbb{Fol}_{d}(\mathbb{P}^{n}_{\mathbb{C}})$.¹⁴¹⁵

 $^{^{14}\}mathrm{O.Calvo-Andrade}$ - Irreducible components of the space of foliations

 $^{^{15}}$ F. Cukierman, J. Gargiulo and C. D. Massri - Stability of logarithmic differential one-forms

Next: use foliation over positive characteristic to construct new irreducible components of $\operatorname{Fol}_d(\mathbb{P}^3_{\mathbb{C}})$.

 $^{{}^{16}\}mathrm{R.C}$ Costa, R. Lizarbe and J.V Pereira - Codimension one foliations of degree three on projective spaces

Next: use foliation over positive characteristic to construct new irreducible components of $\operatorname{Fol}_d(\mathbb{P}^3_{\mathbb{C}})$.

 $\operatorname{Map}_1(\mathbb{P}^3_{\mathbb{C}},\mathbb{P}^1_{\mathbb{C}}\times\mathbb{P}^1_{\mathbb{C}})=\text{the collection of rational maps of }\mathbb{P}^3_{\mathbb{C}}\text{ on }\mathbb{P}^1_{\mathbb{C}}\times\mathbb{P}^1_{\mathbb{C}}\text{ of degree one.}$

 $^{^{16}}$ R.C Costa, R. Lizarbe and J.V Pereira - Codimension one foliations of degree three on projective spaces

Next: use foliation over positive characteristic to construct new irreducible components of $\operatorname{Fol}_d(\mathbb{P}^3_{\mathcal{C}})$.

 $\operatorname{Map}_1(\mathbb{P}^3_{\mathbb{C}},\mathbb{P}^1_{\mathbb{C}}\times\mathbb{P}^1_{\mathbb{C}})=\text{the collection of rational maps of }\mathbb{P}^3_{\mathbb{C}}\text{ on }\mathbb{P}^1_{\mathbb{C}}\times\mathbb{P}^1_{\mathbb{C}}\text{ of degree one.}$

Given $d_1, d_2 \in \mathbb{Z}_{\geq 0}$ let $d = d_1 + d_2 + 2$ and consider the rational map

$$\begin{split} \Psi_{(d;d_1,d_2)} : \mathrm{Map}_1(\mathbb{P}^3_{\mathbb{C}}, \mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}) \times \mathbb{F}\mathrm{ol}_{(\mathbf{d}_1,\mathbf{d}_2)}(\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}) - \to \mathbb{F}\mathrm{ol}_\mathrm{d}(\mathbb{P}^3_{\mathbb{C}}) \\ (\Phi, \mathcal{G}) \longmapsto \Phi^* \mathcal{G} \end{split}$$

 $^{^{16}}$ R.C Costa, R. Lizarbe and J.V Pereira - Codimension one foliations of degree three on projective spaces

Next: use foliation over positive characteristic to construct new irreducible components of $\operatorname{Fol}_d(\mathbb{P}^3_{\mathcal{C}})$.

 $\operatorname{Map}_1(\mathbb{P}^3_{\mathbb{C}},\mathbb{P}^1_{\mathbb{C}}\times\mathbb{P}^1_{\mathbb{C}})=\text{the collection of rational maps of }\mathbb{P}^3_{\mathbb{C}}\text{ on }\mathbb{P}^1_{\mathbb{C}}\times\mathbb{P}^1_{\mathbb{C}}\text{ of degree one.}$

Given $d_1, d_2 \in \mathbb{Z}_{\geq 0}$ let $d = d_1 + d_2 + 2$ and consider the rational map

$$\begin{split} \Psi_{(d;d_1,d_2)} : \mathrm{Map}_1(\mathbb{P}^3_{\mathbb{C}},\mathbb{P}^1_{\mathbb{C}}\times\mathbb{P}^1_{\mathbb{C}})\times \mathbb{F}\mathrm{ol}_{(\mathrm{d}_1,\mathrm{d}_2)}(\mathbb{P}^1_{\mathbb{C}}\times\mathbb{P}^1_{\mathbb{C}}) - \to \mathbb{F}\mathrm{ol}_\mathrm{d}(\mathbb{P}^3_{\mathbb{C}}) \\ (\Phi,\mathcal{G})\longmapsto \Phi^*\mathcal{G} \end{split}$$

Theorem A

Let $C_{(d;d_1,d_2)}$ the image $\Psi_{(d;d_1,d_2)}$. Then $C_{(d;d_1,d_2)}$ is an irreducible component of $\mathbb{F}ol_{\mathbb{C}}^{0}$

 $[\]rm ^{16}R.C$ Costa, R. Lizarbe and J.V Pereira - Codimension one foliations of degree three on projective spaces

Next: use foliation over positive characteristic to construct new irreducible components of $\operatorname{Fol}_d(\mathbb{P}^3_{\mathcal{C}})$.

 $\operatorname{Map}_1(\mathbb{P}^3_{\mathbb{C}},\mathbb{P}^1_{\mathbb{C}}\times\mathbb{P}^1_{\mathbb{C}})=\text{the collection of rational maps of }\mathbb{P}^3_{\mathbb{C}}\text{ on }\mathbb{P}^1_{\mathbb{C}}\times\mathbb{P}^1_{\mathbb{C}}\text{ of degree one.}$

Given $d_1, d_2 \in \mathbb{Z}_{\geq 0}$ let $d = d_1 + d_2 + 2$ and consider the rational map

$$\begin{split} \Psi_{(d;d_1,d_2)} : \mathrm{Map}_1(\mathbb{P}^3_{\mathbb{C}},\mathbb{P}^1_{\mathbb{C}}\times\mathbb{P}^1_{\mathbb{C}})\times \mathbb{F}\mathrm{ol}_{(\mathrm{d}_1,\mathrm{d}_2)}(\mathbb{P}^1_{\mathbb{C}}\times\mathbb{P}^1_{\mathbb{C}}) - \to \mathbb{F}\mathrm{ol}_\mathrm{d}(\mathbb{P}^3_{\mathbb{C}}) \\ (\Phi,\mathcal{G})\longmapsto \Phi^*\mathcal{G} \end{split}$$

Theorem A

Let $C_{(d;d_1,d_2)}$ the image $\Psi_{(d;d_1,d_2)}$. Then $C_{(d;d_1,d_2)}$ is an irreducible component of $\operatorname{Fold}(\mathbb{P}^3_{\mathbb{C}})$

This result generalizes a component of degree d=3 found by R.C Costa, R. Lizarbe e J.V Pereira.^{16}

 $[\]rm ^{16}R.C$ Costa, R. Lizarbe and J.V Pereira - Codimension one foliations of degree three on projective spaces

Some irreducible components New irreducible components

The p-divisor: behavior of the degree

first step: analyze the behavior of the *p*-divisor on open sets.

Some irreducible components New irreducible components

The p-divisor: behavior of the degree

first step: analyze the behavior of the *p*-divisor on open sets.

Theorem

Let ${\mathcal F}$ be a codimension one foliation of degree d on ${\mathbb P}^3_k$ and suppose that

- \mathcal{F} is not p-closed with reduced p-divisor.
- The p-foliation $\mathcal{C}_{\mathcal{F}}$ has degree $e \in \mathbb{Z}_{\geq 0}$.

The p-divisor: behavior of the degree

first step: analyze the behavior of the *p*-divisor on open sets.

Theorem

Let \mathcal{F} be a codimension one foliation of degree d on \mathbb{P}^3_k and suppose that

- \mathcal{F} is not p-closed with reduced p-divisor.
- The p-foliation $\mathcal{C}_{\mathcal{F}}$ has degree $e \in \mathbb{Z}_{\geq 0}$.

Then, there exists an open set $U_{\mathcal{F}}$ in the space of codimension one foliation of degree d on \mathbb{P}^3_k which contains \mathcal{F} such that for any foliation $\mathcal{F}' \in U_{\mathcal{F}}$ we have

Some irreducible components New irreducible components

The *p*-divisor: behavior of the degree

The proof consists in reducing to a problem about polynomials. It is a consequence of the invariance property of the p-divisor and of the following proposition.

Some irreducible components New irreducible components

The p-divisor: behavior of the degree

The proof consists in reducing to a problem about polynomials. It is a consequence of the invariance property of the p-divisor and of the following proposition.

Proposition

Let $d \in \mathbb{Z}_{>0}$ and k be a field of characteristic p > 0. Consider $\mathbb{P}_{k}^{M_{d}}$ the projective space parameterizing homogeneous polynomials of degree d in the variables: $x_{0}, x_{1}, x_{2}, x_{3}$. Let $G \in k[x_{0}, x_{1}, x_{2}, x_{3}]_{d}$ such that $G = FE^{p}$ with F free of p-powers. Then, there exists a open set around [G] such that for all $[\tilde{G}] \in U_{G}$ we have $\tilde{G} = \tilde{F}\tilde{E}^{p}$ with \tilde{F} free of p-powers with $\deg(\tilde{F}) \geq \deg(F)$.

New irreducible components of $\mathbb{F}ol_{d}(\mathbb{P}^{3}_{k})$

- $\bullet~{\bf k}={\rm field}$ of characteristic p>d+2
- $\mathbb{F}ol_{(d_1,d_2)}(\mathbb{P}^1_k \times \mathbb{P}^1_k) =$ space parameterizing the foliations on $\mathbb{P}^1_k \times \mathbb{P}^1_k$ with canonical divisor of type (d_1,d_2)
- $Map_1(\mathbb{P}^3_k, \mathbb{P}^1_k \times \mathbb{P}^1_k) =$ collection of rational maps of degree 1

New irreducible components of $\operatorname{Fol}_d(\mathbb{P}^3_k)$

- $\bullet~{\bf k}={\rm field}$ of characteristic p>d+2
- $\mathbb{F}ol_{(d_1,d_2)}(\mathbb{P}^1_k \times \mathbb{P}^1_k) =$ space parameterizing the foliations on $\mathbb{P}^1_k \times \mathbb{P}^1_k$ with canonical divisor of type (d_1, d_2)
- $Map_1(\mathbb{P}^3_k, \mathbb{P}^1_k \times \mathbb{P}^1_k) =$ collection of rational maps of degree 1

Let $d_1, d_2 \in \mathbb{Z}_{\geq 0}, d = d_1 + d_2 + 2$ and consider the rational map

$$\begin{split} \Psi_{(d;d_1,d_2)} &: \operatorname{Map}_1(\mathbb{P}^3_k, \mathbb{P}^1_k \times \mathbb{P}^1_k) \times \mathbb{F}ol_{(d_1,d_2)}(\mathbb{P}^1_k \times \mathbb{P}^1_k) - \to \mathbb{F}ol_d(\mathbb{P}^3_k) \\ & (\Phi, \mathcal{G}) \longmapsto \Phi^* \mathcal{G}. \end{split}$$

New irreducible components of $\mathbb{F}ol_d(\mathbb{P}^3_k)$

- $\bullet~{\bf k}={\rm field}$ of characteristic p>d+2
- $\mathbb{F}ol_{(d_1,d_2)}(\mathbb{P}^1_k \times \mathbb{P}^1_k) =$ space parameterizing the foliations on $\mathbb{P}^1_k \times \mathbb{P}^1_k$ with canonical divisor of type (d_1, d_2)
- $Map_1(\mathbb{P}^3_k, \mathbb{P}^1_k \times \mathbb{P}^1_k) =$ collection of rational maps of degree 1

Let $d_1, d_2 \in \mathbb{Z}_{>0}, d = d_1 + d_2 + 2$ and consider the rational map

$$\begin{split} \Psi_{(d;d_1,d_2)} : \operatorname{Map}_1(\mathbb{P}^3_k, \mathbb{P}^1_k \times \mathbb{P}^1_k) \times \mathbb{F}ol_{(d_1,d_2)}(\mathbb{P}^1_k \times \mathbb{P}^1_k) - \to \mathbb{F}ol_d(\mathbb{P}^3_k) \\ (\Phi, \mathcal{G}) \longmapsto \Phi^* \mathcal{G}. \end{split}$$

Theorem B

Let $X_{(d;d_1,d_2)}$ the Zariski closure of the image of $\Psi_{(d;d_1,d_2)}$. Then $X_{(d;d_1,d_2)}$ is an irreducible component of $\operatorname{Fol}_d(\mathbb{P}^3_k)$.

step 1: Let \mathcal{F} be a foliation of degree $d \geq 3$ on \mathbb{P}^3_k and suppose that

- $\mathcal{F} = \Phi^* \mathcal{G}$ for some foliation \mathcal{G} of type (d_1, d_2) on $\mathbb{P}^1_k \times \mathbb{P}^1_k$ where Φ is the rational map: $[x_0 : x_1 : y_0 : y_1] \mapsto ([x_0 : x_1], [y_0 : y_1])$,
- \mathcal{G} is not *p*-closed with $\Delta_{\mathcal{G}}$ reduced.

step 1: Let \mathcal{F} be a foliation of degree $d \geq 3$ on \mathbb{P}^3_k and suppose that

- $\mathcal{F} = \Phi^* \mathcal{G}$ for some foliation \mathcal{G} of type (d_1, d_2) on $\mathbb{P}^1_k \times \mathbb{P}^1_k$ where Φ is the rational map: $[x_0 : x_1 : y_0 : y_1] \mapsto ([x_0 : x_1], [y_0 : y_1]),$
- \mathcal{G} is not *p*-closed with $\Delta_{\mathcal{G}}$ reduced.

step 2: Note that \mathcal{F} is not *p*-closed and we have that $\Delta_{\mathcal{F}} = \Phi^* \Delta_{\mathcal{G}}$ (degree comparison). Let *T* be an irreducible component of $\mathbb{F}ol_d(\mathbb{P}^3_k)$ that contains the image of $\Psi_{(d;d_1,d_2)}$ and $\{\mathcal{F}_t\}_{t\in T}$ the family parametrized by *T* with $\mathcal{F}_0 = \mathcal{F}$.

step 1: Let \mathcal{F} be a foliation of degree $d \geq 3$ on \mathbb{P}^3_k and suppose that

- $\mathcal{F} = \Phi^* \mathcal{G}$ for some foliation \mathcal{G} of type (d_1, d_2) on $\mathbb{P}^1_k \times \mathbb{P}^1_k$ where Φ is the rational map: $[x_0 : x_1 : y_0 : y_1] \mapsto ([x_0 : x_1], [y_0 : y_1]),$
- \mathcal{G} is not *p*-closed with $\Delta_{\mathcal{G}}$ reduced.

step 2: Note that \mathcal{F} is not *p*-closed and we have that $\Delta_{\mathcal{F}} = \Phi^* \Delta_{\mathcal{G}}$ (degree comparison). Let *T* be an irreducible component of $\mathbb{F}ol_d(\mathbb{P}^3_k)$ that contains the image of $\Psi_{(d;d_1,d_2)}$ and $\{\mathcal{F}_t\}_{t\in T}$ the family parametrized by *T* with $\mathcal{F}_0 = \mathcal{F}$.

step 3: Let U be an open set of T that contains 0 such that for all $t \in U$ the foliation \mathcal{F}_t is not p-closed. In this case, for all $t \in U$ we have the associated p-foliation: $\{\mathcal{C}_{\mathcal{F}_t}\}_{t \in U}$. The behavior of the degree of the p-divisor in neighborhood implies that we can assume $\deg(\mathcal{C}_{\mathcal{F}_t}) \leq 1$ for all $t \in U$.

step 1: Let \mathcal{F} be a foliation of degree $d \geq 3$ on \mathbb{P}^3_k and suppose that

- $\mathcal{F} = \Phi^* \mathcal{G}$ for some foliation \mathcal{G} of type (d_1, d_2) on $\mathbb{P}^1_k \times \mathbb{P}^1_k$ where Φ is the rational map: $[x_0 : x_1 : y_0 : y_1] \mapsto ([x_0 : x_1], [y_0 : y_1]),$
- \mathcal{G} is not *p*-closed with $\Delta_{\mathcal{G}}$ reduced.

step 2: Note that \mathcal{F} is not *p*-closed and we have that $\Delta_{\mathcal{F}} = \Phi^* \Delta_{\mathcal{G}}$ (degree comparison). Let *T* be an irreducible component of $\mathbb{F}ol_d(\mathbb{P}^3_k)$ that contains the image of $\Psi_{(d;d_1,d_2)}$ and $\{\mathcal{F}_t\}_{t\in T}$ the family parametrized by *T* with $\mathcal{F}_0 = \mathcal{F}$.

step 3: Let U be an open set of T that contains 0 such that for all $t \in U$ the foliation \mathcal{F}_t is not p-closed. In this case, for all $t \in U$ we have the associated p-foliation: $\{\mathcal{C}_{\mathcal{F}_t}\}_{t \in U}$. The behavior of the degree of the p-divisor in neighborhood implies that we can assume $\deg(\mathcal{C}_{\mathcal{F}_t}) \leq 1$ for all $t \in U$.

step 4: comparison degree shows that \mathcal{F} is not in the linear pull back component. By reducing the open set U we can assume that $\deg(\mathcal{C}_{\mathcal{F}_t}) = 1$ on U.

step 5: Since $\deg(\mathcal{F}_t) > 2$ we can assume that $\mathcal{C}_{\mathcal{F}_t}$ is *p*-closed. Indeed, if no then there exists a homogeneous vector fied v_t of degree 1 tangent to \mathcal{F}_t such that $v_t \wedge v_t^p$ is not zero and defines \mathcal{F}_t (degree comparison).

step 5: Since $\deg(\mathcal{F}_t) > 2$ we can assume that $\mathcal{C}_{\mathcal{F}_t}$ is *p*-closed. Indeed, if no then there exists a homogeneous vector fied v_t of degree 1 tangent to \mathcal{F}_t such that $v_t \wedge v_t^p$ is not zero and defines \mathcal{F}_t (degree comparison).

step 6: By a technical lemma, we ensure that \mathcal{F}_t is a pullback by a rational map of degree 1 of a foliation of type (d_1, d_2) on $\mathbb{P}^1_{\mathbf{k}} \times \mathbb{P}^1_{\mathbf{k}}$.

step 5: Since $\deg(\mathcal{F}_t) > 2$ we can assume that $\mathcal{C}_{\mathcal{F}_t}$ is *p*-closed. Indeed, if no then there exists a homogeneous vector fied v_t of degree 1 tangent to \mathcal{F}_t such that $v_t \wedge v_t^p$ is not zero and defines \mathcal{F}_t (degree comparison).

step 6: By a technical lemma, we ensure that \mathcal{F}_t is a pullback by a rational map of degree 1 of a foliation of type (d_1, d_2) on $\mathbb{P}^1_{\mathbf{k}} \times \mathbb{P}^1_{\mathbf{k}}$.

step 7: So, there is a open set $U_{\mathcal{F}}$ in the space of codimension one foliation of degree d on \mathbb{P}^n_k that contains \mathcal{F} which has the following property:

• For all foliation $\tilde{\mathcal{F}} \in U_{\mathcal{F}}$ we have $\tilde{\mathcal{F}} = \gamma^* \tilde{\mathcal{G}}$ for some $\tilde{\mathcal{G}} \in \mathbb{F}ol_{(d_1,d_2)}(\mathbb{P}^1_k \times \mathbb{P}^1_k)$ and $\gamma \in Map_1(\mathbb{P}^3_k, \mathbb{P}^1_k \times \mathbb{P}^1_k)$.

So, $U_{\mathcal{F}}\subset X_{(d;d_1,d_2)}$ and by considering the Zariski closure we conclude that $T=X_{(d;d_1,d_2)}.$

Redution mod p

- $X = \mathcal{Z}(F_0, \ldots, F_r) \subset \mathbb{P}^M_{\mathbb{C}}$ irreducible variety.
- R = finitely generated Z-algebra obtained by adjunction of all coefficient that occurs in F_0, \ldots, F_r .

For each maximal ideal $\mathfrak{p} \in \mathbf{Spm}(R)$ of R the field $k(\mathfrak{p}) = R/\mathfrak{p}$ is finite, in particular, of characteristic p > 0.

Redution mod p

- $X = \mathcal{Z}(F_0, \ldots, F_r) \subset \mathbb{P}^M_{\mathbb{C}}$ irreducible variety.
- R =finitely generated Z-algebra obtained by adjunction of all coefficient that occurs in F_0, \ldots, F_r .

For each maximal ideal $\mathfrak{p} \in \mathbf{Spm}(R)$ of R the field $k(\mathfrak{p}) = R/\mathfrak{p}$ is finite, in particular, of characteristic p > 0.

Proposition (Bertini-Noether)

Let $\mathfrak{p} \in Spm(R)$ be a maximal ideal of R and consider $X_{\mathfrak{p}}$ the variety defined over $\overline{k(\mathfrak{p})}$ obtained via reduction modulo \mathfrak{p} of F_0, \ldots, F_r . Then $X_{\mathfrak{p}}$ is irreducible and dim $X = \dim X_{\mathfrak{p}}$ for almost all maximal ideals of R, i.e for all maximal ideals of R outside a proper closed subset $E \subset Spm(R)$.

Irreducible components and reduction mod p

Let X be a projective variety on $\mathbb{P}^{\mathbb{C}}_{\mathbb{C}}$ given by polynomials $F_0, \ldots, F_r \in \mathbb{C}[x_0, \ldots, x_M]$ and $Y \subset X$ be an irreducible closed given by $H_0, \ldots, H_k \in \mathbb{C}[x_0, \ldots, x_M]$. Let Z be an irreducible component of X which contains Y and suppose that it given by polynomials G_0, \ldots, G_l . Denote by R the a finitely generated Z-algebra obtained by adjunction of all coefficients which appers in

 $F_0,\ldots,F_r,G_0,\ldots,G_l,H_0,\ldots,H_k.$

Irreducible components and reduction mod p

Let X be a projective variety on $\mathbb{P}^{\mathbb{C}}_{\mathbb{C}}$ given by polynomials $F_0, \ldots, F_r \in \mathbb{C}[x_0, \ldots, x_M]$ and $Y \subset X$ be an irreducible closed given by $H_0, \ldots, H_k \in \mathbb{C}[x_0, \ldots, x_M]$. Let Z be an irreducible component of X which contains Y and suppose that it given by polynomials G_0, \ldots, G_l . Denote by R the a finitely generated Z-algebra obtained by adjunction of all coefficients which appers in

$$F_0,\ldots,F_r,G_0,\ldots,G_l,H_0,\ldots,H_k.$$

Corollary

Suppose that there is a dense set S of Spm(R) such that $Y_{\mathfrak{p}} = Z_{\mathfrak{p}}$ for all ideal $\mathfrak{p} \in S$. Then Y = Z and so Y is an irreducible component of X.

Some irreducible components New irreducible components

New irreducible components of $\mathbb{F}ol_{d}(\mathbb{P}^{3}_{\mathbb{C}})$

Consider the rational map

$$\begin{split} \Psi_{(d;d_1,d_2)} \colon \operatorname{Map}_1(\mathbb{P}^3_{\mathbb{C}},\mathbb{P}^1_{\mathbb{C}}\times\mathbb{P}^1_{\mathbb{C}})\times \mathbb{F}\mathrm{ol}_{(d_1,d_2)}(\mathbb{P}^1_{\mathbb{C}}\times\mathbb{P}^1_{\mathbb{C}}) - - \to \mathbb{F}\mathrm{ol}_{\mathrm{d}}(\mathbb{P}^3_{\mathbb{C}}) \\ (\Phi,\mathcal{G}) \mapsto \Phi^*\mathcal{G}. \end{split}$$

Some irreducible components New irreducible components

New irreducible components of $\mathbb{F}ol_d(\mathbb{P}^3_{\mathbb{C}})$

Consider the rational map

$$\Psi_{(d;d_1,d_2)} \colon \operatorname{Map}_1(\mathbb{P}^3_{\mathbb{C}}, \mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}) \times \operatorname{Fol}_{(d_1,d_2)}(\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}) - - \to \operatorname{Fol}_d(\mathbb{P}^3_{\mathbb{C}})$$
$$(\Phi, \mathcal{G}) \mapsto \Phi^* \mathcal{G}.$$

Theorem A

Let $C_{(d;d_1,d_2)}$ be the Zariski closure of the image $\Psi_{(d;d_1,d_2)}$. Then $C_{(d;d_1,d_2)}$ is an irreducible component $\mathbb{F}ol_d(\mathbb{P}^3_{\mathbb{C}})$.

Recall: the result over characteristic p > d + 2 is true.

Proof of Theorem A

• step I: Let Z be an irreducible component of $\operatorname{Fol}_d(\mathbb{P}^3_{\mathbb{C}})$ which contains $C_{(d;d_1,d_2)}$ and let $\{E_0,\ldots,E_h\}$ be the union of a collection of polynomials which describes the varieties: $Z, C_{(d;d_1,d_2)}$ and $\operatorname{Fol}_d(\mathbb{P}^3_{\mathbb{C}})$.

 $^{^{17}}$ W.Mendson, J.V.Pereira - Codimension one foliations in positive characteristic

- step I: Let Z be an irreducible component of $\operatorname{Fol}_d(\mathbb{P}^3_{\mathbb{C}})$ which contains $C_{(d;d_1,d_2)}$ and let $\{E_0,\ldots,E_h\}$ be the union of a collection of polynomials which describes the varieties: $Z, C_{(d;d_1,d_2)}$ and $\operatorname{Fol}_d(\mathbb{P}^3_{\mathbb{C}})$.
- step II: Let R be a Z-algebra obtained by adjunction of all coefficients which appears in E₀,..., E_h and T the closed set in Spm(R) given by ∪^{d+2}_{j=2}V(jR) ⊂ Spm(R). The Theorem B (component in positive characteristic) ensures that for all p ∈ Spm(R) − T we have C_(d;d1,d2), p = Z_p.

 $^{^{17}}$ W.Mendson, J.V.Pereira - Codimension one foliations in positive characteristic

- step I: Let Z be an irreducible component of $\mathbb{F}ol_{d}(\mathbb{P}^{3}_{\mathbb{C}})$ which contains $C_{(d;d_{1},d_{2})}$ and let $\{E_{0},\ldots,E_{h}\}$ be the union of a collection of polynomials which describes the varieties: $Z, C_{(d;d_{1},d_{2})}$ and $\mathbb{F}ol_{d}(\mathbb{P}^{3}_{\mathbb{C}})$.
- step II: Let R be a Z-algebra obtained by adjunction of all coefficients which appears in E₀,..., E_h and T the closed set in Spm(R) given by ∪^{d+2}_{j=2}V(jR) ⊂ Spm(R). The Theorem B (component in positive characteristic) ensures that for all p ∈ Spm(R) − T we have C_(d;d1,d2), p = Z_p.
- step III: By the precedent corollary we conclude that $Z = C_{(d;d_1,d_2)}$ is a irreducible component of $\operatorname{Fol}_d(\mathbb{P}^3_{\mathbb{C}})$.

 $^{^{17}}$ W.Mendson, J.V.Pereira - Codimension one foliations in positive characteristic

- step I: Let Z be an irreducible component of $\mathbb{F}ol_{d}(\mathbb{P}^{3}_{\mathbb{C}})$ which contains $C_{(d;d_{1},d_{2})}$ and let $\{E_{0},\ldots,E_{h}\}$ be the union of a collection of polynomials which describes the varieties: $Z, C_{(d;d_{1},d_{2})}$ and $\mathbb{F}ol_{d}(\mathbb{P}^{3}_{\mathbb{C}})$.
- step II: Let R be a Z-algebra obtained by adjunction of all coefficients which appears in E₀,..., E_h and T the closed set in Spm(R) given by ∪^{d+2}_{j=2}V(jR) ⊂ Spm(R). The Theorem B (component in positive characteristic) ensures that for all p ∈ Spm(R) − T we have C_(d;d1,d2), p = Z_p.
- step III: By the precedent corollary we conclude that $Z = C_{(d;d_1,d_2)}$ is a irreducible component of $\operatorname{Fol}_d(\mathbb{P}^3_{\mathbb{C}})$.

By using similar ideas the result generalizes to $\mathbb{P}^n_{\mathbb{C}}$ for $n\geq 3^{17}$

 $^{^{17}}$ W.Mendson, J.V.Pereira - Codimension one foliations in positive characteristic

- step I: Let Z be an irreducible component of $\mathbb{F}ol_{d}(\mathbb{P}^{3}_{\mathbb{C}})$ which contains $C_{(d;d_{1},d_{2})}$ and let $\{E_{0},\ldots,E_{h}\}$ be the union of a collection of polynomials which describes the varieties: $Z, C_{(d;d_{1},d_{2})}$ and $\mathbb{F}ol_{d}(\mathbb{P}^{3}_{\mathbb{C}})$.
- step II: Let R be a Z-algebra obtained by adjunction of all coefficients which appears in E₀,..., E_h and T the closed set in Spm(R) given by ∪^{d+2}_{j=2}V(jR) ⊂ Spm(R). The Theorem B (component in positive characteristic) ensures that for all p ∈ Spm(R) − T we have C_(d;d1,d2), p = Z_p.
- step III: By the precedent corollary we conclude that $Z = C_{(d;d_1,d_2)}$ is a irreducible component of $\operatorname{Fol}_d(\mathbb{P}^3_{\mathbb{C}})$.

By using similar ideas the result generalizes to $\mathbb{P}^n_{\mathbb{C}}$ for $n \geq 3^{17}$

Corollary

The space of codimension one holomorphic foliations and degree $d \geq 3$ on $\mathbb{P}^3_{\mathbb{C}}$ has at least $\left\lfloor \frac{d-1}{2} \right\rfloor$ distinct irreducible components whose generic element does not have a polynomial integrating factor.

 $^{^{17}}$ W.Mendson, J.V.Pereira - Codimension one foliations in positive characteristic

Thank you :-)