$\begin{array}{c} \text{Introduction} \\ \text{Foliations in characteristic } p > 0 \\ \text{The } p\text{-divisor and non-algebraicity} \\ \text{From characteristic 2 to } \mathbb{C} \end{array}$

On arithmetic of planar vector fields

Wodson Mendson

IRMAR - Université de Rennes 1

 $July\ 04,\ 2023$

Structure

- Part I: Introduction
- Part II: Foliations in characteristic p > 0
- \bullet Part III: The *p*-divisor and non-algebraicity
- ullet Part IV: From characteristic 2 to ${\mathbb C}$

 $\label{eq:continuous} \begin{array}{c} \textbf{Introduction} \\ \textbf{Foliations in characteristic } p > 0 \\ \textbf{The } p\text{-divisor and non-algebraicity} \\ \textbf{From characteristic 2 to } \mathbb{C} \end{array}$

Part I: Introduction

 $\begin{array}{c} \textbf{Introduction} \\ \textbf{Foliations in characteristic } p > 0 \\ \textbf{The } p\text{-divisor and non-algebraicity} \\ \textbf{From characteristic 2 to } \mathbb{C} \end{array}$

Foliations

In this talk: planar vector fields = foliations = foliations on the projective plane K= algebraically closed field

Foliations

In this talk: planar vector fields = foliations = foliations on the projective plane

K = algebraically closed field

Let $d \in \mathbb{Z}_{>0}$

A **foliation**, \mathcal{F} , of degree d on the projective plane \mathbb{P}^2_K is given, mod K^* , by a non-zero element $\omega \in \mathrm{H}^0(\mathbb{P}^2_K, \Omega^1_{\mathbb{P}^2_K}(d+2))$ with finite singular locus

Foliations

In this talk: planar vector fields = foliations = foliations on the projective plane

K = algebraically closed field

Let $d \in \mathbb{Z}_{>0}$

A foliation, \mathcal{F} , of degree d on the projective plane \mathbb{P}^2_K is given, mod K^* , by a non-zero element $\omega \in \mathrm{H}^0(\mathbb{P}^2_K, \Omega^1_{\mathbb{P}^2_K}(d+2))$ with finite singular locus

Explicitly:

• Using the Euler exact sequence we can see ω as a projective 1-form:

$$\omega = Adx + Bdy + Cdz$$

on \mathbb{A}^3_K such that $A,B,C\in K[x,y,z]$ are homogeneous of degree d+1 and Ax+By+Cz=0 with

$$sing(\omega) = \mathcal{Z}(A, B, C) = \{ p \in \mathbb{P}^2_K \mid A(p) = B(p) = C(p) = 0 \}$$

finite.

Foliation in terms of vector field

Assume that the characteristic of K does not divide d+2. The notion of foliation can be given in terms of homogeneous vector fields.

Foliation in terms of vector field

Assume that the characteristic of K does not divide d+2. The notion of foliation can be given in terms of homogeneous vector fields.

• In this sense, a foliation of degree d on \mathbb{P}^2_K is determined, modulo K^* , by a homogeneous vector field on \mathbb{A}^3_K :

$$v = A_0 \partial_x + A_1 \partial_y + A_2 \partial_z \in \mathfrak{X}_d(\mathbb{A}_K^3)$$

where $A_0, A_1, A_2 \in K[x, y, z]$ are homogeneous of degree d with

$$\mathbf{div}(v) = \partial_x A_0 + \partial_u A_1 + \partial_z A_2 = 0$$

Foliation in terms of vector field

Assume that the characteristic of K does not divide d+2. The notion of foliation can be given in terms of homogeneous vector fields.

• In this sense, a foliation of degree d on \mathbb{P}^2_K is determined, modulo K^* , by a homogeneous vector field on \mathbb{A}^3_K :

$$v = A_0 \partial_x + A_1 \partial_y + A_2 \partial_z \in \mathfrak{X}_d(\mathbb{A}_K^3)$$

where $A_0, A_1, A_2 \in K[x, y, z]$ are homogeneous of degree d with

$$\mathbf{div}(v) = \partial_x A_0 + \partial_y A_1 + \partial_z A_2 = 0$$

The equivalence of these notions is given by the following result:

Proposition

^a There is a bijection between the set of projective 1-forms on \mathbb{A}^3_K of degree d+1 and homogeneous vector fields with divergent zero of degree d.

^aJouanolou - Equations de Pfaff algébriques

Suppose that ${\mathcal F}$ is defined by the homogeneous 1-form

$$\omega = Adx + Bdy + Cdz$$

and write

$$d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy).$$

Suppose that ${\mathcal F}$ is defined by the homogeneous 1-form

$$\omega = Adx + Bdy + Cdz$$

and write

$$d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy).$$

The homogeneous vector field degree d with divergent zero is given by

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

Suppose that \mathcal{F} is defined by the homogeneous 1-form

$$\omega = Adx + Bdy + Cdz$$

and write

$$d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy).$$

The homogeneous vector field degree d with divergent zero is given by

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

Example: Let $\alpha \in K^*$ and consider:

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

Suppose that ${\mathcal F}$ is defined by the homogeneous 1-form

$$\omega = Adx + Bdy + Cdz$$

and write

$$d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy).$$

The homogeneous vector field degree d with divergent zero is given by

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

Example: Let $\alpha \in K^*$ and consider:

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

Then ω defines a foliation of degree 1 on \mathbb{P}^2_K and the vector field associated is given by:

$$v = \left(\frac{2\alpha - 1}{3}\right) x \partial_x + \left(\frac{2 - \alpha}{3}\right) y \partial_y + \left(\frac{-1 - \alpha}{3}\right) z \partial_z$$

 $\begin{array}{c} \textbf{Introduction} \\ \textbf{Foliations in characteristic } p > 0 \\ \textbf{The } p\text{-divisor and non-algebraicity} \\ \textbf{From characteristic 2 to } \mathbb{C} \end{array}$

Invariant curves

Let ${\mathcal F}$ be a foliation on ${\mathbb P}^2_K$ given by a projective 1-form $\omega.$

Invariant curves

Let $\mathcal F$ be a foliation on $\mathbb P^2_K$ given by a projective 1-form $\omega.$

Let $C=\{F=0\}\subset \mathbb{P}^2_K$ be an algebraic curve given by a irreducible polynomial $F\in K[x,y,z].$

Invariant curves

Let $\mathcal F$ be a foliation on $\mathbb P^2_K$ given by a projective 1-form $\omega.$

Let $C=\{F=0\}\subset \mathbb{P}^2_K$ be an algebraic curve given by a irreducible polynomial $F\in K[x,y,z].$

Definition

The curve C is \mathcal{F} -invariant if there is a homogeneous 2-form σ on \mathbb{A}^3_K such that

$$dF \wedge \omega = F\sigma$$

Invariant curves

Let $\mathcal F$ be a foliation on $\mathbb P^2_K$ given by a projective 1-form $\omega.$

Let $C=\{F=0\}\subset \mathbb{P}^2_K$ be an algebraic curve given by a irreducible polynomial $F\in K[x,y,z].$

Definition

The curve C is \mathcal{F} -invariant if there is a homogeneous 2-form σ on \mathbb{A}^3_K such that

$$dF \wedge \omega = F\sigma$$

Example: foliations with invariant curves

• The foliation given by

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

has $\{x=0\}$, $\{y=0\}$ and $\{z=0\}$ as invariant curves.

Example: foliations with invariant curves

• The foliation given by

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

has $\{x=0\}$, $\{y=0\}$ and $\{z=0\}$ as invariant curves.

• Logarithmic foliations: Let $d_1, d_2, \ldots, d_r \in \mathbb{Z}_{>0}$ and $F_1, \ldots, F_r \in K[x, y, z]$ homogeneous polynomials with $d_i = \deg(F_i)$. Suppose that F_1, \ldots, F_r are irreducible and coprime. Let $\alpha_1, \ldots, \alpha_r \in K^*$ such that $\sum_{i=1}^r \alpha_i d_i = 0$ and consider the 1-form

$$\Omega = F_1 F_2 \cdots F_{r-1} F_r \sum_{i=1}^r \alpha_i \frac{dF_i}{F_i}.$$

The 1-form Ω defines, \mathcal{F}_{Ω} , a foliation of degree $d = \sum_{i} d_{i} - 2$ on \mathbb{P}_{K}^{2} . We say that \mathcal{F}_{Ω} is a **logarithmic foliation** of type (d_{1}, \ldots, d_{r}) . The curves $C_{i} = \{F_{i} = 0\}$ are \mathcal{F}_{Ω} -invariant.

Jouanolou example: foliations without invariant curves

Let $d \in \mathbb{Z}_{>1}$ and consider the foliation on \mathbb{P}^2_K given by the projective 1-form:

$$\begin{split} \mathcal{F}_d \colon \Omega_d &= (x^dz - y^{d+1})dx + (xy^d - z^{d+1})dy + (z^dy - x^{d+1})dz \\ v_d &= z^d\partial_x + x^d\partial_y + y^d\partial_z \end{split}$$

Jouanolou example: foliations without invariant curves

Let $d \in \mathbb{Z}_{>1}$ and consider the foliation on \mathbb{P}^2_K given by the projective 1-form:

$$\begin{split} \mathcal{F}_d \colon \Omega_d &= (x^dz - y^{d+1})dx + (xy^d - z^{d+1})dy + (z^dy - x^{d+1})dz \\ v_d &= z^d\partial_x + x^d\partial_y + y^d\partial_z \end{split}$$

Theorem (Jouanolou)

^a If $K = \mathbb{C}$ the foliation \mathcal{F}_d does not have invariant algebraic curves.

^aJouanolou - Equations de Pfaff algébriques

Jouanolou example: foliations without invariant curves

Let $d \in \mathbb{Z}_{>1}$ and consider the foliation on \mathbb{P}^2_K given by the projective 1-form:

$$\begin{split} \mathcal{F}_d \colon \Omega_d &= (x^dz - y^{d+1})dx + (xy^d - z^{d+1})dy + (z^dy - x^{d+1})dz \\ v_d &= z^d\partial_x + x^d\partial_y + y^d\partial_z \end{split}$$

Theorem (Jouanolou)

^a If $K = \mathbb{C}$ the foliation \mathcal{F}_d does not have invariant algebraic curves.

^aJouanolou - Equations de Pfaff algébriques

This result implies in particular that on $\mathbb{P}^2_{\mathbb{C}}$ almost all foliation on the complex projective plane have no algebraic invariant curves.

Introduction Foliations in characteristic p > 0The p-divisor and non-algebraicity From characteristic 2 to $\mathbb C$

Part II: Foliations in characteristic p > 0

K= algebraically closed field of characteristic p>0.

K= algebraically closed field of characteristic p>0.

Let $\mathcal F$ be a foliation on $\mathbb P^2_K$ of degree d defined by

$$\omega = Adx + Bdy + Cdz$$

and suppose that $p \nmid d + 2$.

K = algebraically closed field of characteristic p > 0.

Let \mathcal{F} be a foliation on \mathbb{P}^2_K of degree d defined by

$$\omega = Adx + Bdy + Cdz$$

and suppose that $p \nmid d + 2$. Write $d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy)$ and let v_{ω} be the vector field of degree d associated to \mathcal{F} given by

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

K = algebraically closed field of characteristic p > 0.

Let \mathcal{F} be a foliation on \mathbb{P}^2_K of degree d defined by

$$\omega = Adx + Bdy + Cdz$$

and suppose that $p \nmid d + 2$. Write $d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy)$ and let v_{ω} be the vector field of degree d associated to \mathcal{F} given by

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

The p-divisor is given by

$$\Delta_{\mathcal{F}} = \{ i_{v_{\omega}^p} \omega = 0 \}.$$

Note that $\Delta_{\mathcal{F}}$ has degree p(d-1)+d+2.

K = algebraically closed field of characteristic p > 0.

Let \mathcal{F} be a foliation on \mathbb{P}^2_K of degree d defined by

$$\omega = Adx + Bdy + Cdz$$

and suppose that $p \nmid d + 2$. Write $d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy)$ and let v_{ω} be the vector field of degree d associated to \mathcal{F} given by

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

The p-divisor is given by

$$\Delta_{\mathcal{F}} = \{ i_{v_{\omega}^p} \omega = 0 \}.$$

Note that $\Delta_{\mathcal{F}}$ has degree p(d-1)+d+2.

Definition

The foliation \mathcal{F} is p-closed if $\Delta_{\mathcal{F}} = 0$.

Let $\alpha \in K^*$ and consider:

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

Let $\alpha \in K^*$ and consider:

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

Then ω defines a foliation of degree 1 on \mathbb{P}^2_K . The vector field associated is given by:

$$v = \left(\frac{2\alpha - 1}{3}\right)x\partial_x + \left(\frac{2 - \alpha}{3}\right)y\partial_y + \left(\frac{-1 - \alpha}{3}\right)z\partial_z$$

Let $\alpha \in K^*$ and consider:

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

Then ω defines a foliation of degree 1 on \mathbb{P}^2_K . The vector field associated is given by:

$$v = \left(\frac{2\alpha - 1}{3}\right) x \partial_x + \left(\frac{2 - \alpha}{3}\right) y \partial_y + \left(\frac{-1 - \alpha}{3}\right) z \partial_z$$

By iteration we get:

$$v^{p} = \left(\frac{2\alpha^{p} - 1}{3}\right)x\partial_{x} + \left(\frac{2 - \alpha^{p}}{3}\right)y\partial_{y} + \left(\frac{-1 - \alpha^{p}}{3}\right)z\partial_{z}$$

and the equation for the p-divisor is:

$$i_{vp}\omega = yzv^p(x) - \alpha xzv^p(y) + (\alpha - 1)xyv^p(z) = (\alpha^p - \alpha)xyz$$

If $\alpha \notin \mathbb{F}_p$:

$$\Delta_{\mathcal{F}} = \{x = 0\} + \{y = 0\} + \{z = 0\}.$$

Introduction Foliations in characteristic p > 0The p-divisor and non-algebraicity
From characteristic 2 to $\mathbb C$

The p-divisor

The main property of the p-divisor is the following.

The main property of the p-divisor is the following.

Proposition

- ^a Let \mathcal{F} be a non-p-closed foliation on \mathbb{P}^2_k and $C \subset \mathbb{P}^2_k$ be an algebraic curve.
 - If C is \mathcal{F} -invariant then $\operatorname{ord}_C(\Delta_{\mathcal{F}}) > 0$;

The main property of the p-divisor is the following.

Proposition

- ^a Let \mathcal{F} be a non-p-closed foliation on \mathbb{P}^2_k and $C \subset \mathbb{P}^2_k$ be an algebraic curve.
 - If C is \mathcal{F} -invariant then $\operatorname{ord}_C(\Delta_{\mathcal{F}}) > 0$;
 - If $\operatorname{ord}_C(\Delta_{\mathcal{F}}) \not\equiv 0 \mod p$ then C is \mathcal{F} -invariant.

The main property of the p-divisor is the following.

Proposition

- ^a Let \mathcal{F} be a non-p-closed foliation on \mathbb{P}^2_k and $C \subset \mathbb{P}^2_k$ be an algebraic curve.
 - If C is \mathcal{F} -invariant then $\operatorname{ord}_C(\Delta_{\mathcal{F}}) > 0$;
 - If $\operatorname{ord}_C(\Delta_{\mathcal{F}}) \not\equiv 0 \mod p$ then C is \mathcal{F} -invariant.
 - ^aW.Mendson Foliations on smooth algebraic surface in positive characteristic

Corollary

On the projective plane over characteristic p > 0 any foliation of degree d such that $p \nmid d + 2$ has an invariant algebraic curve.

Corollary

On the projective plane over characteristic p > 0 any non-p-closed foliation of degree d has an invariant algebraic curve of degree less than or equal to p(d-1) + d + 2.

The p-divisor

Corollary

On the projective plane over characteristic p > 0 any non-p-closed foliation of degree d has an invariant algebraic curve of degree less than or equal to p(d-1) + d + 2.

Problem: Let \mathcal{F} be a foliation in the projective plane over the characteristic p > 0. How many solutions can \mathcal{F} have?

The p-divisor

Corollary

On the projective plane over characteristic p > 0 any non-p-closed foliation of degree d has an invariant algebraic curve of degree less than or equal to p(d-1) + d + 2.

Problem: Let \mathcal{F} be a foliation in the projective plane over the characteristic p > 0. How many solutions can \mathcal{F} have?

Proposition

^a A foliation is p-closed if and only if it has infinitely many solutions.

^aBrunella, Nicolau - Sur les hypersurfaces solutions des équations de Pfaff

Jouanolou foliation in positive characteristic

Theorem

Let p > 2 be a prime number such that $7 \nmid p + 4$ and such that $p \not\equiv 1 \mod 3$. Then, the Jouanolou foliation of degree two \mathcal{F}_2 defined over a field of characteristic p has irreducible p-divisor.

Jouanolou foliation in positive characteristic

Theorem

Let p > 2 be a prime number such that $7 \nmid p + 4$ and such that $p \not\equiv 1 \mod 3$. Then, the Jouanolou foliation of degree two \mathcal{F}_2 defined over a field of characteristic p has irreducible p-divisor.

In the proof, we use a particular automorphism of \mathcal{F}_2 .

Let \mathcal{F} be a foliation on \mathbb{P}^2_K defined by a projective 1-form ω .

Jouanolou foliation in positive characteristic

Theorem

Let p > 2 be a prime number such that $7 \nmid p + 4$ and such that $p \not\equiv 1 \mod 3$. Then, the Jouanolou foliation of degree two \mathcal{F}_2 defined over a field of characteristic p has irreducible p-divisor.

In the proof, we use a particular automorphism of \mathcal{F}_2 .

Let \mathcal{F} be a foliation on \mathbb{P}^2_K defined by a projective 1-form ω . An automorphism of a foliation \mathcal{F} is a automorphism Φ of \mathbb{P}^2_K which preserves \mathcal{F} :

$$\Phi^*\omega = \sigma(\Phi)\omega$$

for some $\sigma(\Phi) \in K^*$. The automorphism group of \mathcal{F} is denoted by $\operatorname{Aut}(\mathcal{F})$.

Let \mathcal{F}_d defined by

$$\Omega_d = (x^d z - y^{d+1}) dx + (xy^d - z^{d+1}) dy + (z^d y - x^{d+1}) dz.$$

¹here we assume that p does not divide $d^2 + d + 1$

Let \mathcal{F}_d defined by

$$\Omega_d = (x^d z - y^{d+1}) dx + (xy^d - z^{d+1}) dy + (z^d y - x^{d+1}) dz.$$

Let γ be a primitive $(d^2 + d + 1)$ th root¹ of unity and consider

$$\Phi \colon \mathbb{P}^2_K \longrightarrow \mathbb{P}^2_K \qquad [x:y:z] \mapsto [\gamma^{d^2+1}x:\gamma y:z]$$

¹here we assume that p does not divide $d^2 + d + 1$

Let \mathcal{F}_d defined by

$$\Omega_d = (x^d z - y^{d+1}) dx + (xy^d - z^{d+1}) dy + (z^d y - x^{d+1}) dz.$$

Let γ be a primitive (d^2+d+1) th root¹ of unity and consider

$$\Phi \colon \mathbb{P}^2_K \longrightarrow \mathbb{P}^2_K \qquad [x:y:z] \mapsto [\gamma^{d^2+1}x:\gamma y:z]$$

Then $\Phi \in \text{Aut}(\mathcal{F})$ has order $d^2 + d + 1$ with $\Phi^*\Omega = \gamma\Omega$.

¹here we assume that p does not divide $d^2 + d + 1$

Let \mathcal{F}_d defined by

$$\Omega_d = (x^d z - y^{d+1}) dx + (xy^d - z^{d+1}) dy + (z^d y - x^{d+1}) dz.$$

Let γ be a primitive $(d^2 + d + 1)$ th root¹ of unity and consider

$$\Phi \colon \mathbb{P}^2_K \longrightarrow \mathbb{P}^2_K \qquad [x:y:z] \mapsto [\gamma^{d^2+1}x:\gamma y:z]$$

Then $\Phi \in \operatorname{Aut}(\mathcal{F})$ has order $d^2 + d + 1$ with $\Phi^*\Omega = \gamma\Omega$.

Proposition

Let $\mathcal F$ be a foliation on $\mathbb P^2_K$ non-p-closed and $\Phi \in \operatorname{Aut}(\mathcal F)$. Then $\Phi^*\Delta_{\mathcal F} = \Delta_{\mathcal F}.$

¹here we assume that p does not divide $d^2 + d + 1$

$$\mathcal{F}_2 \colon \Omega_2 = (x^d z - y^3) dx + (xy^2 - z^3) dy + (z^2 y - x^3) dz.$$

Idea of proof of the irreducibility of the p-divisor of $\mathcal{J} := \mathcal{F}_2$:

$$\mathcal{F}_2: \Omega_2 = (x^d z - y^3) dx + (xy^2 - z^3) dy + (z^2 y - x^3) dz.$$

Idea of proof of the irreducibility of the p-divisor of $\mathcal{J} := \mathcal{F}_2$:

• The conditions $7 \nmid p+4$ and $p \not\equiv 1 \mod 3$ imply that $\Delta_{\mathcal{J}} \not\equiv 0$. Assume that there is an \mathcal{J} -invariant curve $C = \{F = 0\}$ with $\deg(C) < \deg(\Delta_{\mathcal{J}})$;

$$\mathcal{F}_2: \Omega_2 = (x^d z - y^3) dx + (xy^2 - z^3) dy + (z^2 y - x^3) dz.$$

Idea of proof of the irreducibility of the p-divisor of $\mathcal{J} := \mathcal{F}_2$:

- The conditions $7 \nmid p+4$ and $p \not\equiv 1 \mod 3$ imply that $\Delta_{\mathcal{J}} \not\equiv 0$. Assume that there is an \mathcal{J} -invariant curve $C = \{F = 0\}$ with $\deg(C) < \deg(\Delta_{\mathcal{J}})$;
- We can write:

$$dF \wedge \omega = F\left(\left(\frac{\deg(C)}{4}\right)d\omega + i_R\beta\right)$$

with $\beta \neq 0$ a homogeneous 3-form on \mathbb{A}^3_K of degree 1;

$$\mathcal{F}_2 \colon \Omega_2 = (x^d z - y^3) dx + (xy^2 - z^3) dy + (z^2 y - x^3) dz.$$

Idea of proof of the irreducibility of the p-divisor of $\mathcal{J} := \mathcal{F}_2$:

- The conditions $7 \nmid p+4$ and $p \not\equiv 1 \mod 3$ imply that $\Delta_{\mathcal{J}} \not\equiv 0$. Assume that there is an \mathcal{J} -invariant curve $C = \{F = 0\}$ with $\deg(C) < \deg(\Delta_{\mathcal{J}})$;
- We can write:

$$dF \wedge \omega = F\left(\left(\frac{\deg(C)}{4}\right)d\omega + i_R\beta\right)$$

with $\beta \neq 0$ a homogeneous 3-form on \mathbb{A}^3_K of degree 1;

- We have two cases:
 - some power Φ^l fixes the curve C: computation implies that $\beta = 0$, contradiction;

$$\mathcal{F}_2: \Omega_2 = (x^d z - y^3) dx + (xy^2 - z^3) dy + (z^2 y - x^3) dz.$$

Idea of proof of the irreducibility of the p-divisor of $\mathcal{J} := \mathcal{F}_2$:

- The conditions $7 \nmid p+4$ and $p \not\equiv 1 \mod 3$ imply that $\Delta_{\mathcal{J}} \not\equiv 0$. Assume that there is an \mathcal{J} -invariant curve $C = \{F = 0\}$ with $\deg(C) < \deg(\Delta_{\mathcal{J}})$;
- We can write:

$$dF \wedge \omega = F\left(\left(\frac{\deg(C)}{4}\right)d\omega + i_R\beta\right)$$

with $\beta \neq 0$ a homogeneous 3-form on \mathbb{A}^3_K of degree 1;

- We have two cases:
 - some power Φ^l fixes the curve C: computation implies that $\beta=0$, contradiction;
 - ② Φ^l does not fix C for all $l \in \{1, \dots, 6\}$: In that case for any prime divisor P in the support of $\Delta_{\mathcal{J}}$ we have: $P, \Phi^*P, \dots, (\Phi^6)^*P$ are disticts and this implies that $7 \mid p+4$, a contradiction;

Jouanolou foliation II

Corollary

In the conditions of the Theorem, a generic foliation of degree two on the projective plane over characteristic p>0 has irreducible p-divisor.

Jouanolou foliation II

Corollary

In the conditions of the Theorem, a generic foliation of degree two on the projective plane over characteristic p > 0 has irreducible p-divisor.

For d > 2 we have:

Theorem

- ^a Let K be an algebraically closed field of characteristic p>0. Let $d\in\mathbb{Z}_{>0}$ such that
 - p < d and $p \not\equiv 1 \mod 3$;
 - $d^2 + d + 1$ is prime.

Then the Jouanolou foliation \mathcal{F}_d has irreducible p-divisor or $\Delta_{\mathcal{F}_d} = C + pR$ with $\deg(C) = pl + d + 2$ with l > 0 and R not \mathcal{F}_d -invariant.

^aW.Mendson - Arithmetic aspects of the Jouannlou foliation

Jouanolou foliation II

Corollary

In the conditions of the Theorem, a generic foliation of degree two on the projective plane over characteristic p > 0 has irreducible p-divisor.

For d > 2 we have:

Theorem

- ^a Let K be an algebraically closed field of characteristic p>0. Let $d\in\mathbb{Z}_{>0}$ such that
 - p < d and $p \not\equiv 1 \mod 3$;
 - $d^2 + d + 1$ is prime.

Then the Jouanolou foliation \mathcal{F}_d has irreducible p-divisor or $\Delta_{\mathcal{F}_d} = C + pR$ with $\deg(C) = pl + d + 2$ with l > 0 and R not \mathcal{F}_d -invariant.

^aW.Mendson - Arithmetic aspects of the Jouannlou foliation

An interesting consequence: the Jouanolou foliation \mathcal{F}_d has a unique algebraic curve.

characteristic p = 5 and $d \le 100$

d	$d^2 + d + 1$	$\deg(C)$	l	R
6	43	18	2	$\{xyz=0\}$
12	157	39	5	$\{xyz = 0\}$
17	307	54	7	$\{xyz = 0\}$
21	463	63	8	$\{xyz = 0\}$
27	757	84	11	$\{xyz = 0\}$
41	1723	123	16	$\{xyz = 0\}$
57	3307	174	23	$\{xyz = 0\}$
62	3907	189	25	$\{xyz=0\}$
66	4423	198	26	$\{xyz = 0\}$
71	5113	213	28	$\{xyz = 0\}$
77	6007	234	31	$\{xyz=0\}$

- for $d \in \{2, 14, 24, 54, 59, 69, 89, 99\}$, $\Delta_{\mathcal{F}_d}$ is irreducible;
- for the remaining cases, $\Delta_{\mathcal{F}_d} = 0$.

Introduction Foliations in characteristic p > 0The p-divisor and non-algebraicity From characteristic 2 to \mathbb{C}

Part III: The p-divisor and non-algebraicity

Consider the case where $K = \mathbb{C}$. Let \mathcal{F} be a foliation on $\mathbb{P}^2_{\mathbb{C}}$ of degree d defined by the projective 1-form:

$$\omega = Adx + Bdy + Cdz \qquad A,B,C \in \mathbb{C}[x,y,z]_{d+1}$$

Consider the case where $K = \mathbb{C}$. Let \mathcal{F} be a foliation on $\mathbb{P}^2_{\mathbb{C}}$ of degree d defined by the projective 1-form:

$$\omega = Adx + Bdy + Cdz$$
 $A, B, C \in \mathbb{C}[x, y, z]_{d+1}$

and let $\mathbb{Z}[\mathcal{F}]$ the finitely generated \mathbb{Z} -algebra obtained by adjoining all coefficients and their inverses that occur in A,B and C

Consider the case where $K = \mathbb{C}$. Let \mathcal{F} be a foliation on $\mathbb{P}^2_{\mathbb{C}}$ of degree d defined by the projective 1-form:

$$\omega = Adx + Bdy + Cdz$$
 $A, B, C \in \mathbb{C}[x, y, z]_{d+1}$

and let $\mathbb{Z}[\mathcal{F}]$ the finitely generated \mathbb{Z} -algebra obtained by adjoining all coefficients and their inverses that occur in A,B and C

Example

Let $\mathcal F$ be a foliation on $\mathbb P^2_{\mathbb C}$ given by the 1-form:

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

for some $\alpha \in \mathbb{C} - \mathbb{Q}$. Then, the algebra associated is $\mathbb{Z}[\alpha, \alpha^{-1}]$

Consider the case where $K = \mathbb{C}$. Let \mathcal{F} be a foliation on $\mathbb{P}^2_{\mathbb{C}}$ of degree d defined by the projective 1-form:

$$\omega = Adx + Bdy + Cdz$$
 $A, B, C \in \mathbb{C}[x, y, z]_{d+1}$

and let $\mathbb{Z}[\mathcal{F}]$ the finitely generated \mathbb{Z} -algebra obtained by adjoining all coefficients and their inverses that occur in A,B and C

Example

Let \mathcal{F} be a foliation on $\mathbb{P}^2_{\mathbb{C}}$ given by the 1-form:

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

for some $\alpha \in \mathbb{C} - \mathbb{Q}$. Then, the algebra associated is $\mathbb{Z}[\alpha, \alpha^{-1}]$

For the Jouanolou foliation, $A, B, C \in \mathbb{Z}[x, y, z]$ so that $\mathbb{Z}[\mathcal{F}_d] = \mathbb{Z}$.

Fact: For each maximal ideal $\mathfrak{p} \in \mathbf{Spm}(\mathbb{Z}[\mathcal{F}])$ the residue field $\mathbb{F}_{\mathfrak{p}} = \mathbb{Z}[\mathcal{F}]/\mathfrak{p}$ is finite, in particular of characteristic p > 0.

Fact: For each maximal ideal $\mathfrak{p} \in \mathbf{Spm}(\mathbb{Z}[\mathcal{F}])$ the residue field $\mathbb{F}_{\mathfrak{p}} = \mathbb{Z}[\mathcal{F}]/\mathfrak{p}$ is finite, in particular of characteristic p > 0.

Denote by $\omega_{\mathfrak{p}}$ the 1-form over $\overline{\mathbb{F}}_{\mathfrak{p}}$ obtained by reduction modulo \mathfrak{p} of all coefficient which appears in A, B and C. We obtain a non-zero element of $\mathrm{H}^0(\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}, \Omega^1_{\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}} \otimes \mathcal{O}_{\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}}(d+2))$ and $\omega_{\mathfrak{p}}$ determines a foliation on $\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}$:

$$\omega_{\mathfrak{p}} = Adx + Bdy + Cdz \mod \mathfrak{p}$$

Fact: For each maximal ideal $\mathfrak{p} \in \mathbf{Spm}(\mathbb{Z}[\mathcal{F}])$ the residue field $\mathbb{F}_{\mathfrak{p}} = \mathbb{Z}[\mathcal{F}]/\mathfrak{p}$ is finite, in particular of characteristic p > 0.

Denote by $\omega_{\mathfrak{p}}$ the 1-form over $\overline{\mathbb{F}}_{\mathfrak{p}}$ obtained by reduction modulo \mathfrak{p} of all coefficient which appears in A, B and C. We obtain a non-zero element of $\mathrm{H}^0(\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}, \Omega^1_{\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}} \otimes \mathcal{O}_{\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}}(d+2))$ and $\omega_{\mathfrak{p}}$ determines a foliation on $\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}$:

$$\omega_{\mathfrak{p}} = Adx + Bdy + Cdz \mod \mathfrak{p}$$

Definition

The foliation determined by $\omega_{\mathfrak{p}}$ is denoted by $\mathcal{F}_{\mathfrak{p}}$ and is called the **reduction** modulo p of \mathcal{F} .

Introduction Foliations in characteristic p > 0The p-divisor and non-algebraicity From characteristic 2 to $\mathbb C$

Reduction modulo \boldsymbol{p}

Natural question:

Natural question:

Problem

Suppose that an abstract property P holds for $\mathcal{F}_{\mathfrak{p}}$ for an infinitely many primes (or almost all primes) $\mathfrak{p} \in Spm(\mathbb{Z}[\mathcal{F}])$. What we can say about \mathcal{F} ?

Natural question:

Problem

Suppose that an abstract property P holds for $\mathcal{F}_{\mathfrak{p}}$ for an infinitely many primes (or almost all primes) $\mathfrak{p} \in Spm(\mathbb{Z}[\mathcal{F}])$. What we can say about \mathcal{F} ?

- infinitely many primes = primes in some dense subset of $Spm(\mathbb{Z}[\mathcal{F}])$;
- almost all primes = primes in some non-empty open subset of $Spm(\mathbb{Z}[\mathcal{F}])$.

Natural question:

Problem

Suppose that an abstract property P holds for $\mathcal{F}_{\mathfrak{p}}$ for an infinitely many primes (or almost all primes) $\mathfrak{p} \in Spm(\mathbb{Z}[\mathcal{F}])$. What we can say about \mathcal{F} ?

- infinitely many primes = primes in some dense subset of $Spm(\mathbb{Z}[\mathcal{F}])$;
- almost all primes = primes in some non-empty open subset of $Spm(\mathbb{Z}[\mathcal{F}])$.

When $\mathbb{Z}[\mathcal{F}] = \mathbb{Z}$ then the notions: infinitely many primes and all most primes are the usual notions.

The property ${f P}$ can be:

 \bullet the existence of $\mathcal{F}_{\mathfrak{p}}\text{-invariant curves};$

The property ${\bf P}$ can be:

- the existence of $\mathcal{F}_{\mathfrak{p}}$ -invariant curves;
- the foliation $\mathcal{F}_{\mathfrak{p}}$ is *p*-closed;

The property \mathbf{P} can be:

- the existence of $\mathcal{F}_{\mathfrak{p}}$ -invariant curves;
- the foliation $\mathcal{F}_{\mathfrak{p}}$ is *p*-closed;
- the foliation $\mathcal{F}_{\mathfrak{p}}$ has irreducible/reduced p-divisor;

The property \mathbf{P} can be:

- the existence of $\mathcal{F}_{\mathfrak{p}}$ -invariant curves;
- the foliation $\mathcal{F}_{\mathfrak{p}}$ is p-closed;
- the foliation $\mathcal{F}_{\mathfrak{p}}$ has irreducible/reduced p-divisor;

Proposition

Let $\mathcal F$ be a foliation on $\mathbb P^2_{\mathbb C}$ and suppose that $\mathcal F_{\mathfrak p}$ has an invariant curve of degree less than $\mathbf d$ for almost all primes $\mathfrak p$. Then, $\mathcal F$ has an invariant curve of degree less than $\mathbf d$.

The property \mathbf{P} can be:

- the existence of $\mathcal{F}_{\mathfrak{p}}$ -invariant curves;
- the foliation $\mathcal{F}_{\mathfrak{p}}$ is p-closed;
- the foliation $\mathcal{F}_{\mathfrak{p}}$ has irreducible/reduced p-divisor;

Proposition

Let $\mathcal F$ be a foliation on $\mathbb P^2_{\mathbb C}$ and suppose that $\mathcal F_{\mathfrak p}$ has an invariant curve of degree less than $\mathbf d$ for almost all primes $\mathfrak p$. Then, $\mathcal F$ has an invariant curve of degree less than $\mathbf d$.

Idea: the set $S(\mathcal{F},K,d)$ of foliations on \mathbb{P}^2_K that have invariant curves of degree $\leq d$ is algebraic variety over K. In particular, $S(\mathcal{F},\mathbb{C},d)\neq\varnothing$ if and only if $S(\mathcal{F},\overline{\mathbb{F}}_{\mathfrak{p}},d)\neq\varnothing$ for almost all primes \mathfrak{p} .

Algebraic solutions

Goal: use reduction modulo p to prove the non-algebraicity of holomorphic foliations

 $^{^2\}mathrm{Carnicer}$ - The Poincare problem in the nondicritical case

Algebraic solutions

Goal: use reduction modulo p to prove the non-algebraicity of holomorphic foliations

Proposition

^a Let \mathcal{F} be a non-discritical foliation on $\mathbb{P}^{\mathbb{C}}_{\mathbb{C}}$ defined by a projective 1-form $\omega = Adx + Bdy + Cdz$ with $A, B, C \in \mathbb{Z}[x, y, z]$. Let p be a prime number such that p > d + 2. If $\Delta_{\mathcal{F}_p}$ is irreducible then \mathcal{F} has no algebraic solutions.

^aW.Mendson - Foliations on smooth algebraic surfaces in position characteristic

²Carnicer - The Poincare problem in the nondicritical case

Algebraic solutions

 ${f Goal:}$ use reduction modulo p to prove the non-algebraicity of holomorphic foliations

Proposition

^a Let \mathcal{F} be a non-discritical foliation on $\mathbb{P}^2_{\mathbb{C}}$ defined by a projective 1-form $\omega = Adx + Bdy + Cdz$ with $A, B, C \in \mathbb{Z}[x, y, z]$. Let p be a prime number such that p > d + 2. If $\Delta_{\mathcal{F}_p}$ is irreducible then \mathcal{F} has no algebraic solutions.

^aW.Mendson - Foliations on smooth algebraic surfaces in position characteristic

Idea: Suppose that there is a invariant curve $C = \{F = 0\}$ that is \mathcal{F} -invariant. We can assume that $F \in \mathbb{Z}[x,y,z]$. The Carnicer bound² implies that $\deg(C) \leq d+2$. Reducing modulo p and using the irreducibility of $\Delta_{\mathcal{F}_p}$ we get a contradiction.

²Carnicer - The Poincare problem in the nondicritical case

Introduction Foliations in characteristic p > 0 The p-divisor and non-algebraicity From characteristic 2 to \mathbb{C}

Applications

Corollary

The Jouanolou foliation of degree 2 or 3 has no algebraic solutions.

Applications

Corollary

The Jouanolou foliation of degree 2 or 3 has no algebraic solutions.

Let \mathcal{F} be a foliation on $\mathbb{P}^2_{\mathbb{C}}$.

Proposition

If the p-divisor $\Delta_{\mathcal{F}_{\mathfrak{p}}}$ is irreducible for almost all primes \mathfrak{p} then \mathcal{F} has no algebraic solutions

Applications

Corollary

The Jouanolou foliation of degree 2 or 3 has no algebraic solutions.

Let \mathcal{F} be a foliation on $\mathbb{P}^2_{\mathbb{C}}$.

Proposition

If the p-divisor $\Delta_{\mathcal{F}_{\mathfrak{p}}}$ is irreducible for almost all primes \mathfrak{p} then \mathcal{F} has no algebraic solutions

Idea: Suppose that there is a invariant curve $C = \{F = 0\}$ that is \mathcal{F} -invariant. This curve has degree e. For large primes p we obtain $C \mod p = \Delta_{\mathcal{F}_p}$, a contradiction since the degree of the p-divisor depends of p.

Example

Example

Let Φ be the morphism

$$\Phi \colon \mathbb{P}^2_{\mathbb{C}} \longrightarrow \mathbb{P}^2_{\mathbb{C}} \qquad [x:y:z] \mapsto [x^2:y^2:z^2]$$

and consider $\mathcal{G} = \Phi^* \mathcal{F}_d$, where \mathcal{F}_d is the Jouanolou foliation of degree d. Then, $\mathcal{G}_{\mathfrak{p}}$ is not p-closed for infinitely many primes \mathfrak{p} with the p-divisor having a p-component.

Example

Example

Let Φ be the morphism

$$\Phi\colon \mathbb{P}^2_{\mathbb{C}} \longrightarrow \mathbb{P}^2_{\mathbb{C}} \qquad [x:y:z] \mapsto [x^2:y^2:z^2]$$

and consider $\mathcal{G} = \Phi^* \mathcal{F}_d$, where \mathcal{F}_d is the Jouanolou foliation of degree d. Then, $\mathcal{G}_{\mathfrak{p}}$ is not p-closed for infinitely many primes \mathfrak{p} with the p-divisor having a p-component.

So, there are foliations on $\mathbb{P}^2_{\mathbb{C}}$ without algebraic invariant curves such that the reduction modulo p has non-irreducible p-divisor for infinitely many primes p.

Example

Let Φ be the morphism

$$\Phi \colon \mathbb{P}^2_{\mathbb{C}} \longrightarrow \mathbb{P}^2_{\mathbb{C}} \qquad [x:y:z] \mapsto [x^2:y^2:z^2]$$

and consider $\mathcal{G} = \Phi^* \mathcal{F}_d$, where \mathcal{F}_d is the Jouanolou foliation of degree d. Then, $\mathcal{G}_{\mathfrak{p}}$ is not p-closed for infinitely many primes \mathfrak{p} with the p-divisor having a p-component.

So, there are foliations on $\mathbb{P}^2_{\mathbb{C}}$ without algebraic invariant curves such that the reduction modulo p has non-irreducible p-divisor for infinitely many primes p. Related to this problem we have the following:

Problem

^a Let \mathcal{F} be a foliation on $\mathbb{P}^2_{\mathcal{K}}$ and $C = \{F = 0\}$ be an irreducible \mathcal{F} -invariant curve. When $sing(C) \subset sing(\mathcal{F})$? Does this occur if \mathcal{F} is p-reduced with deg(C) < p?

^aRecently, F.Touzet showed me an argument for the case: deg(C)(deg(C) - 1) < p

Introduction Foliations in characteristic p > 0The p-divisor and non-algebraicity From characteristic 2 to $\mathbb C$

Examples

Example

Assume that K has characteristic 3 and consider the Jouanolou foliation of degree 2 over K. Then, the p-divisor Δ is irreducible with $\operatorname{sing}(\Delta) \not\subset \operatorname{sing}(\mathcal{F})$.

Examples

Example

Assume that K has characteristic 3 and consider the Jouanolou foliation of degree 2 over K. Then, the p-divisor Δ is irreducible with $\operatorname{sing}(\Delta) \not\subset \operatorname{sing}(\mathcal{F})$.

Example (F.Touzet)

Consider the foliation 5-closed foliation given by:

$$\omega = 2z(x+y)dx + z(2z+x)dy + 4(2x^2 + 3xy + 2yz)dz$$

The curve $C = \{-x^4 + x^3y + x^2yz + y^2z^2\}$ is \mathcal{F} -invariant with $[0:0:1] \in \operatorname{sing}(C)$ but not in $\operatorname{sing}(\mathcal{F})$.

Examples

Example

Assume that K has characteristic 3 and consider the Jouanolou foliation of degree 2 over K. Then, the p-divisor Δ is irreducible with $\operatorname{sing}(\Delta) \not\subset \operatorname{sing}(\mathcal{F})$.

Example (F.Touzet)

Consider the foliation 5-closed foliation given by:

$$\omega = 2z(x+y)dx + z(2z+x)dy + 4(2x^2 + 3xy + 2yz)dz$$

The curve $C = \{-x^4 + x^3y + x^2yz + y^2z^2\}$ is \mathcal{F} -invariant with $[0:0:1] \in \operatorname{sing}(C)$ but not in $\operatorname{sing}(\mathcal{F})$.

Consider the question: assume that \mathcal{F} is p-reduced and $\deg(C) < p$. Is it true that $\operatorname{sing}(C) \subset \operatorname{sing}(\mathcal{F})$?

Examples

Assume that K has characteristic 3 and consider the Jouannolou foliation of degree 2 over K. Then, the p-divisor Δ is irreducible with $\operatorname{sing}(\Delta) \not\subset \operatorname{sing}(\mathcal{F})$.

Example (F.Touzet)

Consider the foliation 5-closed foliation given by:

$$\omega = 2z(x+y)dx + z(2z+x)dy + 4(2x^2 + 3xy + 2yz)dz$$

The curve $C = \{-x^4 + x^3y + x^2yz + y^2z^2\}$ is \mathcal{F} -invariant with $[0:0:1] \in \operatorname{sing}(C)$ but not in $\operatorname{sing}(\mathcal{F})$.

Consider the question: assume that \mathcal{F} is p-reduced and $\deg(C) < p$. Is it true that $sing(C) \subset sing(\mathcal{F})$?

Proposition

Assume that the answer is YES. Let \mathcal{F} be a good^a foliation of degree two. Then \mathcal{F} has not algebraic solutions if and only if $\Delta_{\mathcal{F}_n}$ is irreducible for infinitely many primes p.

 $a = \mathcal{F} \mod p$ is p-reduced for infinitely many primes p

Introduction Foliations in characteristic p > 0The p-divisor and non-algebraicity From characteristic 2 to \mathbb{C}

Part IV: From characteristic 2 to $\mathbb C$

Jouanolou foliation in characteristic 2

Proposition

 \mathcal{F}_d is 2-closed if and only $d \equiv 0 \mod 2$. If $d \equiv 1 \mod 2$ then $\Delta_{\mathcal{F}_d}$ is irreducible of degree 3d.

 $^{^3\}mathrm{S.Gao}$ - Absolute irreducibility of polynomials via Newton polytopes

 $^{^4\}mathrm{W.Mendson}$ - Arithmetic aspects of the Jouannlou foliation

Jouanolou foliation in characteristic 2

Proposition

 \mathcal{F}_d is 2-closed if and only $d \equiv 0 \mod 2$. If $d \equiv 1 \mod 2$ then $\Delta_{\mathcal{F}_d}$ is irreducible of degree 3d.

By explicit computation, we can check that the 2-divisor is irreducible 3 for $d\equiv 1$ mod 2:

$$\Delta_{\mathcal{F}_d} = y^{2d+1}z^{d-1} + x^dy^dz^d + x^{2d+1}y^{d-1} + x^{d-1}z^{2d+1}$$

 $^{^3\}mathrm{S.Gao}$ - Absolute irreducibility of polynomials via Newton polytopes

⁴W.Mendson - Arithmetic aspects of the Jouannlou foliation

Jouanolou foliation in characteristic 2

Proposition

 \mathcal{F}_d is 2-closed if and only $d \equiv 0 \mod 2$. If $d \equiv 1 \mod 2$ then $\Delta_{\mathcal{F}_d}$ is irreducible of degree 3d.

By explicit computation, we can check that the 2-divisor is irreducible 3 for $d\equiv 1$ mod 2:

$$\Delta_{\mathcal{F}_d} = y^{2d+1}z^{d-1} + x^dy^dz^d + x^{2d+1}y^{d-1} + x^{d-1}z^{2d+1}$$

Using reduction modulo two it is possible to give a new proof of the following result⁴:

Theorem

Let $d \in \mathbb{Z}$ such that $d \not\equiv 1 \mod 3$ and $d \equiv 1 \mod 2$. If $K = \mathbb{C}$ then the Jouanolou foliation of degree d has no algebraic solutions.

 $^{^3\}mathrm{S.Gao}$ - Absolute irreducibility of polynomials via Newton polytopes

⁴W.Mendson - Arithmetic aspects of the Jouannlou foliation

The idea of the proof:

 $^{^5\}mathrm{J.V.Pereira},\,\mathrm{P.F.S\'{a}nchez}$ - Automorphism and non-integrability

The idea of the proof:

step 1: Suppose that there is an algebraic curve C_0 given by an irreducible polynomial $F \in \mathbb{C}[x, y, z]$;

 $^{^5\}mathrm{J.V.Pereira},~\mathrm{P.F.S\'{a}nchez}$ - Automorphism and non-integrability

The idea of the proof:

step 1: Suppose that there is an algebraic curve C_0 given by an irreducible polynomial $F \in \mathbb{C}[x, y, z]$;

step 2: An particular property of the automorphism group of \mathcal{F}_d^5 permits to construct a invariant curve C_1 , from C_0 , that has degree d+2 and it is defined over a number field L. In particular, $\deg(C_1) \equiv 1 \mod 2$;

⁵J.V.Pereira, P.F.Sánchez - Automorphism and non-integrability

The idea of the proof:

step 1: Suppose that there is an algebraic curve C_0 given by an irreducible polynomial $F \in \mathbb{C}[x, y, z]$;

step 2: An particular property of the automorphism group of \mathcal{F}_d^5 permits to construct a invariant curve C_1 , from C_0 , that has degree d+2 and it is defined over a number field L. In particular, $\deg(C_1) \equiv 1 \mod 2$;

step 3: The condition $d \equiv 1 \mod 2$ implies that the foliation $\mathcal{F}_d \mod 2\mathbb{Z}$ is not 2-closed. The 2-divisor is irreducible of degree 3d;

⁵J.V.Pereira, P.F.Sánchez - Automorphism and non-integrability

The idea of the proof:

step 1: Suppose that there is an algebraic curve C_0 given by an irreducible polynomial $F \in \mathbb{C}[x, y, z]$;

step 2: An particular property of the automorphism group of \mathcal{F}_d^5 permits to construct a invariant curve C_1 , from C_0 , that has degree d+2 and it is defined over a number field L. In particular, $\deg(C_1) \equiv 1 \mod 2$;

step 3: The condition $d \equiv 1 \mod 2$ implies that the foliation $\mathcal{F}_d \mod 2\mathbb{Z}$ is not 2-closed. The 2-divisor is irreducible of degree 3d;

step 4: Reducing C_1 modulo 2 we get a contradiction by degree comparison since $C_1 = \Delta_{\mathcal{F}_d} \mod 2$.

⁵J.V.Pereira, P.F.Sánchez - Automorphism and non-integrability

Thank you ;-)