The space of foliations (in positive characteristic)

Wodson Mendson

Seminário de Geometria Algébrica e Geometria Complexa da UFF

June 04, 2025

Structure

• Part I: Introduction

Structure

- Part I: Introduction
- Part II: Codimension-one case in small characteristics/degree

Structure

- Part I: Introduction
- Part II: Codimension-one case in small characteristics/degree
- Part III: Special irreducible components

Part I: Introduction

Foliations in projective spaces

In this talk: foliations = foliations on the projective spaces

K = algebraically closed field

Foliations in projective spaces

In this talk: foliations = foliations on the projective spaces

K = algebraically closed field

Let $n, d, q \in \mathbb{Z}$ with $n > 1, d \ge 0$ and $1 \le q \le n - 1$.

Foliations in projective spaces

In this talk: foliations = foliations on the projective spaces

K = algebraically closed field

Let $n, d, q \in \mathbb{Z}$ with $n > 1, d \ge 0$ and $1 \le q \le n - 1$.

A codimension q foliation, \mathcal{F} , of degree d on the projective space \mathbb{P}_K^n is given, mod K^* , by a non-zero element $\omega \in \mathrm{H}^0(\mathbb{P}_K^n, \Omega^q_{\mathbb{P}_K^n}(d+q+1))$ which satisfies the following conditions

Foliations in projective spaces

In this talk: foliations = foliations on the projective spaces

K = algebraically closed field

Let $n, d, q \in \mathbb{Z}$ with $n > 1, d \ge 0$ and $1 \le q \le n - 1$.

A codimension q foliation, \mathcal{F} , of degree d on the projective space \mathbb{P}_K^n is given, mod K^* , by a non-zero element $\omega \in \mathrm{H}^0(\mathbb{P}_K^n, \Omega^q_{\mathbb{P}_K^n}(d+q+1))$ which satisfies the following conditions

۲

$$\operatorname{codim}\operatorname{sing}(\omega) \ge 2$$
 (1)

Foliations in projective spaces

In this talk: foliations = foliations on the projective spaces

K = algebraically closed field

Let $n, d, q \in \mathbb{Z}$ with $n > 1, d \ge 0$ and $1 \le q \le n - 1$.

A codimension q foliation, \mathcal{F} , of degree d on the projective space \mathbb{P}_K^n is given, mod K^* , by a non-zero element $\omega \in \mathrm{H}^0(\mathbb{P}_K^n, \Omega^q_{\mathbb{P}_K^n}(d+q+1))$ which satisfies the following conditions

 $\operatorname{codim}\operatorname{sing}(\omega) \ge 2$ (1)

• The q-form ω is locally decomposable:

$$i_v \omega \wedge \omega = 0 \qquad \forall v \in \bigwedge^{q-1} \mathbb{A}_K^{n+1}$$
 (2)

Foliations in projective spaces

In this talk: foliations = foliations on the projective spaces

K = algebraically closed field

Let $n, d, q \in \mathbb{Z}$ with $n > 1, d \ge 0$ and $1 \le q \le n - 1$.

A codimension q foliation, \mathcal{F} , of degree d on the projective space \mathbb{P}_K^n is given, mod K^* , by a non-zero element $\omega \in \mathrm{H}^0(\mathbb{P}_K^n, \Omega^q_{\mathbb{P}_K^n}(d+q+1))$ which satisfies the following conditions

$$\operatorname{codim}\operatorname{sing}(\omega) \ge 2$$
 (1)

• The q-form ω is locally decomposable:

$$i_v \omega \wedge \omega = 0 \qquad \forall v \in \bigwedge^{q-1} \mathbb{A}_K^{n+1}$$
 (2)

• The q-form ω is **integrable**:

$$i_v \omega \wedge d\omega = 0 \qquad \forall v \in \bigwedge^{q-1} \mathbb{A}_K^{n+1}$$
 (3)

Foliation in projective spaces

It follows from Euler's sequence that we can identify $\mathrm{H}^{0}(\mathbb{P}^{n}_{K}, \Omega^{q}_{\mathbb{P}^{n}_{K}}(d+q+1))$ with the vector space of homogeneous polynomial q-forms

$$\omega = \sum_{0 \le i_1 < \dots < i_q \le n} a_I(x_0, \dots, x_n) dx_I$$

which are annihilated by the radial vector field $R = \sum_{i=0} x_i \partial_{x_i}$

Foliation in projective spaces

It follows from Euler's sequence that we can identify $\mathrm{H}^{0}(\mathbb{P}^{n}_{K}, \Omega^{q}_{\mathbb{P}^{n}_{K}}(d+q+1))$ with the vector space of homogeneous polynomial q-forms

$$\omega = \sum_{0 \le i_1 < \dots < i_q \le n} a_I(x_0, \dots, x_n) dx_I$$

which are annihilated by the radial vector field $R = \sum_{i=0} x_i \partial_{x_i}$

A projective q-form of degree d + q + 1 is a homogeneous q-form in Aⁿ⁺¹_K representing an element of H⁰(Pⁿ_K, Ω^q_{Pⁿ_K}(d + q + 1))

Foliation in projective spaces

It follows from Euler's sequence that we can identify $\mathrm{H}^{0}(\mathbb{P}^{n}_{K}, \Omega^{q}_{\mathbb{P}^{n}_{K}}(d+q+1))$ with the vector space of homogeneous polynomial q-forms

$$\omega = \sum_{0 \le i_1 < \dots < i_q \le n} a_I(x_0, \dots, x_n) dx_I$$

which are annihilated by the radial vector field $R = \sum_{i=0} x_i \partial_{x_i}$

• A projective q-form of degree d + q + 1 is a homogeneous q-form in \mathbb{A}_{K}^{n+1} representing an element of $\mathrm{H}^{0}(\mathbb{P}_{K}^{n}, \Omega_{\mathbb{P}_{K}^{n}}^{q}(d + q + 1))$

Example: Let $\alpha \in K^*$. The 1-form

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

is a projective 1-form of degree 3 on \mathbb{A}^3_K and defines a foliation of degree 1 on \mathbb{P}^2_K .

The space of codimension q foliations of degree d on the projective space \mathbb{P}^n_K is the quasi-projective variety of $\mathbb{P}\mathrm{H}^0(\mathbb{P}^n_K, \Omega^q_{\mathbb{P}^n_K}(d+q+1))$:

 $\mathsf{Fol}^q_d(\mathbb{P}^n_K) = \{[\omega] \in \mathbb{P} \operatorname{H}^0(\mathbb{P}^n_K, \Omega^q_{\mathbb{P}^n_K}(d+q+1)) \mid \omega \text{ satisfies } 1, 2 \text{ and } 3\}$

The space of codimension q foliations of degree d on the projective space \mathbb{P}_{K}^{n} is the quasi-projective variety of $\mathbb{P}^{\mathrm{H}^{0}}_{K}(\mathbb{P}_{K}^{n}, \Omega_{\mathbb{P}_{K}^{n}}^{q}(d+q+1))$:

 $\mathsf{Fol}^q_d(\mathbb{P}^n_K) = \{ [\omega] \in \mathbb{P} \operatorname{H}^0(\mathbb{P}^n_K, \Omega^q_{\mathbb{P}^n_K}(d+q+1)) \mid \omega \text{ satisfies } 1, 2 \text{ and } 3 \}$

When $K = \mathbb{C}$, a classical problem is the following.

The space of codimension q foliations of degree d on the projective space \mathbb{P}_{K}^{n} is the quasi-projective variety of $\mathbb{P} \operatorname{H}^{0}(\mathbb{P}_{K}^{n}, \Omega_{\mathbb{P}_{K}}^{q}(d+q+1))$:

 $\mathsf{Fol}^q_d(\mathbb{P}^n_K) = \{[\omega] \in \mathbb{P} \operatorname{H}^0(\mathbb{P}^n_K, \Omega^q_{\mathbb{P}^n_K}(d+q+1)) \mid \omega \text{ satisfies } 1, 2 \text{ and } 3\}$

When $K = \mathbb{C}$, a classical problem is the following.

Problem

For all integers $d \ge 0$, $1 \le q \le n-1$, and $n \ge 3$, describe the irreducible components of $\mathsf{Fol}^d_d(\mathbb{P}^n_{\mathbb{C}})$.

The space of codimension q foliations of degree d on the projective space \mathbb{P}_{K}^{n} is the quasi-projective variety of $\mathbb{P} \operatorname{H}^{0}(\mathbb{P}_{K}^{n}, \Omega_{\mathbb{P}_{K}}^{q}(d+q+1))$:

 $\mathsf{Fol}^q_d(\mathbb{P}^n_K) = \{[\omega] \in \mathbb{P} \operatorname{H}^0(\mathbb{P}^n_K, \Omega^q_{\mathbb{P}^n_K}(d+q+1)) \mid \omega \text{ satisfies } 1, 2 \text{ and } 3\}$

When $K = \mathbb{C}$, a classical problem is the following.

Problem

For all integers $d \ge 0$, $1 \le q \le n-1$, and $n \ge 3$, describe the irreducible components of $\mathsf{Fol}^d_d(\mathbb{P}^n_{\mathbb{C}})$.

• Note that $\operatorname{Fol}_d^1(\mathbb{P}_K^2)$ is irreducible, as the integrability condition holds automatically for dimensional reasons.

A codimension one foliation of degree d on \mathbb{P}^n_K is given by a homogeneous 1-form on the affine space \mathbb{A}^{n+1}_K

$$\sigma = A_0(x_0, \dots, x_n)dx_0 + \dots + A_n(x_0, \dots, x_n)dx_n \in \mathrm{H}^0(\mathbb{P}^n_K, \Omega^1_{\mathbb{P}^n_K}(d+2))$$

A codimension one foliation of degree d on \mathbb{P}^n_K is given by a homogeneous 1-form on the affine space \mathbb{A}^{n+1}_K

$$\sigma = A_0(x_0, \dots, x_n)dx_0 + \dots + A_n(x_0, \dots, x_n)dx_n \in \mathrm{H}^0(\mathbb{P}^n_K, \Omega^1_{\mathbb{P}^n_K}(d+2))$$

where $A_0 \ldots, A_n \in K[x_0, \ldots, x_n]$ are homogeneous of degree d + 1 and such that $sing(\sigma) = \mathcal{Z}(A_0 \ldots, A_n)$ has codimension ≥ 2 and with σ having the following properties:

$$i_R \sigma = \sum_i A_i x_i = 0 \qquad \sigma \wedge d\sigma = 0.$$

The integrability condition gives equations:

$$A_i\left(\frac{\partial A_l}{\partial x_j} - \frac{\partial A_j}{\partial x_l}\right) + A_j\left(\frac{\partial A_i}{\partial x_l} - \frac{\partial A_l}{\partial x_i}\right) + A_l\left(\frac{\partial A_j}{\partial x_i} - \frac{\partial A_i}{\partial x_j}\right) = 0$$

for $0 \leq i < j < l \leq n$.

The integrability condition gives equations:

$$A_i\left(\frac{\partial A_l}{\partial x_j} - \frac{\partial A_j}{\partial x_l}\right) + A_j\left(\frac{\partial A_i}{\partial x_l} - \frac{\partial A_l}{\partial x_i}\right) + A_l\left(\frac{\partial A_j}{\partial x_i} - \frac{\partial A_i}{\partial x_j}\right) = 0$$

for $0 \leq i < j < l \leq n$.

The space of codimension one foliations of degree $d\geq 0$ on $\mathbb{P}^n_K \ (n\geq 2)$ is

 $\mathsf{Fol}^1_d(\mathbb{P}^n_K) = \{[\omega] \in \mathbb{P}(\mathrm{H}^0(\mathbb{P}^n_K, \Omega^1_{\mathbb{P}^n_K}(d+2))) \mid \omega \wedge d\omega = 0 \text{ and } \operatorname{codim} \operatorname{sing}(\omega) \geq 2\}$

The integrability condition gives equations:

$$A_i\left(\frac{\partial A_l}{\partial x_j} - \frac{\partial A_j}{\partial x_l}\right) + A_j\left(\frac{\partial A_i}{\partial x_l} - \frac{\partial A_l}{\partial x_i}\right) + A_l\left(\frac{\partial A_j}{\partial x_i} - \frac{\partial A_i}{\partial x_j}\right) = 0$$

for $0 \leq i < j < l \leq n$.

The space of codimension one foliations of degree $d \ge 0$ on \mathbb{P}^n_K $(n \ge 2)$ is

 $\mathsf{Fol}^1_d(\mathbb{P}^n_K) = \{[\omega] \in \mathbb{P}(\mathrm{H}^0(\mathbb{P}^n_K, \Omega^1_{\mathbb{P}^n_K}(d+2))) \mid \omega \wedge d\omega = 0 \text{ and } \operatorname{codim} \operatorname{sing}(\omega) \geq 2\}$

Problem

Describe the irreducible components of $\mathsf{Fol}^1_d(\mathbb{P}^n_{\mathbb{C}})$.

Some irreducible components of $\mathsf{Fol}_d^1(\mathbb{P}_K^n)$

Some known results:

• Degree zero and one: $\mathsf{Fol}_0^1(\mathbb{P}^n_{\mathbb{C}})$ is irreducible and identified with the Grassmannian of lines in $\mathbb{P}^n_{\mathbb{C}}$. When d = 1, the space $\mathsf{Fol}_1^1(\mathbb{P}^n_{\mathbb{C}})$ has exactly two irreducible components.¹²

 $^{^1\}mathrm{Alcides}\ \mathrm{Lins}\ \mathrm{Neto},\ \mathbf{Irreducible}\ \mathbf{components}\ \mathbf{of}\ \mathbf{the}\ \mathbf{space}\ \mathbf{of}\ \mathbf{foliations}$

 $^{^2{\}rm F.}$ Loray, J. V. Pereira, and F. Touzet. Foliations with trivial canonical bundle on Fano 3-folds

 $^{^{3}}$ Irreducible components of the space of holomorphic foliations of degree two in $\mathrm{CP}(n)$

 $^{{}^{4}\}mathrm{Maurício}$ Corrêa and Alan Muniz Holomorphic foliations of degree two and arbitrary dimension

 $^{^{5}}$ Codimension one foliations of degree three on projective spaces

Some irreducible components of $\mathsf{Fol}_d^1(\mathbb{P}_K^n)$

Some known results:

- Degree zero and one: $\mathsf{Fol}_0^1(\mathbb{P}^n_{\mathbb{C}})$ is irreducible and identified with the Grassmannian of lines in $\mathbb{P}^n_{\mathbb{C}}$. When d = 1, the space $\mathsf{Fol}_1^1(\mathbb{P}^n_{\mathbb{C}})$ has exactly two irreducible components.¹²
- Degree two: For codimension one foliations of degree d = 2 on $\mathbb{P}^n_{\mathbb{C}}$, Cerveau and Lins Neto showed³ that $\mathsf{Fol}_2^1(\mathbb{P}^n_{\mathbb{C}})$ has exactly six irreducible components and described them explicitly.⁴

 $^{^{1}}$ Alcides Lins Neto, Irreducible components of the space of foliations

 $^{^2{\}rm F.}$ Loray, J. V. Pereira, and F. Touzet. Foliations with trivial canonical bundle on Fano 3-folds

 $^{^3}$ Irreducible components of the space of holomorphic foliations of degree two in ${f CP}(n)$

 $^{{}^{4}\}mathrm{Maurício}$ Corrêa and Alan Muniz Holomorphic foliations of degree two and arbitrary dimension

 $^{^{5}}$ Codimension one foliations of degree three on projective spaces

Some irreducible components of $\mathsf{Fol}_d^1(\mathbb{P}_K^n)$

Some known results:

- Degree zero and one: $\mathsf{Fol}_0^1(\mathbb{P}^n_{\mathbb{C}})$ is irreducible and identified with the Grassmannian of lines in $\mathbb{P}^n_{\mathbb{C}}$. When d = 1, the space $\mathsf{Fol}_1^1(\mathbb{P}^n_{\mathbb{C}})$ has exactly two irreducible components.¹²
- Degree two: For codimension one foliations of degree d = 2 on $\mathbb{P}^n_{\mathbb{C}}$, Cerveau and Lins Neto showed³ that $\mathsf{Fol}_2^1(\mathbb{P}^n_{\mathbb{C}})$ has exactly six irreducible components and described them explicitly.⁴
- Degree three: In a recent work⁵, R.C. da Costa, R. Lizarbe, and J.V. Pereira used a structure theorem to describe exactly 18 irreducible components of $\mathsf{Fol}_3^1(\mathbb{P}^n_{\mathbb{C}})$ whose generic element admits no meromorphic first integral. They also show that $\mathsf{Fol}_3^1(\mathbb{P}^n_{\mathbb{C}})$ has at least 24 distinct irreducible components.

 $^{^{1}}$ Alcides Lins Neto, Irreducible components of the space of foliations

 $^{^2{\}rm F.}$ Loray, J. V. Pereira, and F. Touzet. Foliations with trivial canonical bundle on Fano 3-folds

 $^{^{-3}}$ Irreducible components of the space of holomorphic foliations of degree two in $ext{CP}(n)$

 $^{{}^{4}\}mathrm{Maurício}$ Corrêa and Alan Muniz Holomorphic foliations of degree two and arbitrary dimension

 $^{^{5}}$ Codimension one foliations of degree three on projective spaces

Components in degree $d \ge 3$

Rational components: Let F, G be irreducible homogeneous polynomials of degrees p and q, respectively. Assume F and G are coprime and d = p + q - 2. Then, ω = qFdG - pGdF defines a foliation on Pⁿ_C of degree d. Let R(p,q) denote the set of such foliations. The closure R(p,q) is an irreducible component of Fol¹_d(Pⁿ_C).⁶⁷⁸

 $^{^{6}\}mathrm{Gomez}\text{-}\mathrm{Mont}$ and A. Lins Neto — Structural stability of foliations with a meromorphic first integral

 $^{^7\}mathrm{F.}$ Cukierman, J. V. Pereira, I. Vainsencher — Stability of foliations induced by rational maps

 $^{^{8}\}mathrm{W.}$ Mendson and J. V. Pereira — The space of foliations on projective spaces in positive characteristic

 $^{{}^9\}mathrm{Cerveau},$ Lins Neto and Edixhoven — Pull-back components of the space of holomorphic foliations on $\mathbb{CP}(n),\ n\geq 3$

Components in degree $d \ge 3$

- Rational components: Let F, G be irreducible homogeneous polynomials of degrees p and q, respectively. Assume F and G are coprime and d = p + q 2. Then, ω = qFdG pGdF defines a foliation on Pⁿ_C of degree d. Let R(p,q) denote the set of such foliations. The closure R(p,q) is an irreducible component of Fol¹_d(Pⁿ_C).⁶⁷⁸
- Pullback components: Let G be a codimension one foliation on P²_C of degree e, defined by a projective 1-form ω. Let F: Pⁿ_C → P²_C be a dominant rational map of degree m. Then F^{*}ω defines a foliation of degree d = (e + 2)m - 2 on Pⁿ_C. Let PB(m, e, n) be the set of these foliations. Then PB(m, e, n) is an irreducible component of Fol¹_d(Pⁿ_C).⁹

 $^{^{6}\}mathrm{Gomez}\text{-}\mathrm{Mont}$ and A. Lins Neto — Structural stability of foliations with a meromorphic first integral

 $^{^{7}\}mathrm{F.}$ Cukierman, J. V. Pereira, I. Vainsencher — Stability of foliations induced by rational maps

 $^{^{8}\}mathrm{W.}$ Mendson and J. V. Pereira — The space of foliations on projective spaces in positive characteristic

 $^{^9 {\}rm Cerveau},$ Lins Neto and Edixhoven — Pull-back components of the space of holomorphic foliations on $\mathbb{CP}(n), \ n \geq 3$

Components in degree $d \ge 3$

• Logarithmic components: Let $d_1, d_2, \ldots, d_r \in \mathbb{Z}_{>0}$ and F_1, \ldots, F_r be homogeneous polynomials with $\deg(F_i) = d_i$. Assume F_1, \ldots, F_r are irreducible and pairwise coprime. Let $\alpha_1, \ldots, \alpha_r \in \mathbb{C}^*$ such that $\sum_{i=1}^r \alpha_i d_i = 0$ and consider the 1-form

$$\Omega = F_1 F_2 \cdots F_r \sum_{i=1}^r \alpha_i \frac{dF_i}{F_i}$$

The 1-form Ω defines a foliation \mathcal{F}_{Ω} of codimension one and degree $d = \sum_{i} d_{i} - 2$ on $\mathbb{P}^{n}_{\mathbb{C}}$. In this case, we say that \mathcal{F}_{Ω} is a logarithmic foliation of type (d_{1}, \ldots, d_{r}) . Let $\mathrm{Log}_{n}(d_{1}, \ldots, d_{r})$ denote the set of such foliations. Then the closure $\overline{\mathrm{Log}_{n}(d_{1}, \ldots, d_{r})}$ is an irreducible component of $\mathsf{Fol}_{d}^{1}(\mathbb{P}^{n}_{\mathbb{C}})$.¹⁰¹¹¹²

 $^{^{10}}$ O. Calvo-Andrade — Irreducible components of the space of foliations

 $^{^{11}}$ F. Cukierman, J. Gargiulo and C.D. Massri — Stability of logarithmic differential one-forms

 $^{^{12}\}mathrm{W.}$ Mendson and J. V. Pereira —The space of foliations in projective spaces in positive characteristic

Irreducible components via reduction mod p

The technique of reduction modulo p for codimension one foliation on the projective spaces can be used to give a proof of the following theorem about irreducible components of $\mathsf{Fol}_{d}^{1}(\mathbb{P}^{n}_{\mathbb{C}})$:

Irreducible components via reduction mod p

The technique of reduction modulo p for codimension one foliation on the projective spaces can be used to give a proof of the following theorem about irreducible components of $\operatorname{\mathsf{Fol}}^1_d(\mathbb{P}^n_{\mathbb{C}})$:

Theorem

^{*ab*} Let $d \in \mathbb{Z}_{\geq 3}$ and $d_1, d_2 \in \mathbb{Z}_{>0}$ such that $d = d_1 + d_2 + 2$. Let $\text{PBB}(d_1, d_2)$ be the set of foliations on $\mathbb{P}^n_{\mathbb{C}}$ that are linear pullback of a foliation of type (d_1, d_2) on $\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}$. Then $\overline{\text{PBB}(d_1, d_2)}$ is an irreducible component of $\operatorname{Fol}^1_d(\mathbb{P}^n_{\mathbb{C}})$.

^aW. Mendson - Folheações de codimensão um em característica positiva e aplicações ^bW. Mendson, J. V. Pereira - Codimension one foliations in positive characteristic

The topics in the proof include:

Irreducible components via reduction mod p

The technique of reduction modulo p for codimension one foliation on the projective spaces can be used to give a proof of the following theorem about irreducible components of $\operatorname{\mathsf{Fol}}^1_d(\mathbb{P}^n_{\mathbb{C}})$:

Theorem

^{*ab*} Let $d \in \mathbb{Z}_{\geq 3}$ and $d_1, d_2 \in \mathbb{Z}_{>0}$ such that $d = d_1 + d_2 + 2$. Let $\text{PBB}(d_1, d_2)$ be the set of foliations on $\mathbb{P}^n_{\mathbb{C}}$ that are linear pullback of a foliation of type (d_1, d_2) on $\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}$. Then $\overline{\text{PBB}(d_1, d_2)}$ is an irreducible component of $\operatorname{Fol}^1_d(\mathbb{P}^n_{\mathbb{C}})$.

 a W. Mendson - Folheações de codimensão um em característica positiva e aplicações b W. Mendson, J. V. Pereira - Codimension one foliations in positive characteristic

The topics in the proof include:

• the struture of the *p*-divisor for generic foliations on $\mathbb{P}^1_K \times \mathbb{P}^1_K$;

Irreducible components via reduction mod p

The technique of reduction modulo p for codimension one foliation on the projective spaces can be used to give a proof of the following theorem about irreducible components of $\operatorname{\mathsf{Fol}}^1_d(\mathbb{P}^n_{\mathbb{C}})$:

Theorem

^{*ab*} Let $d \in \mathbb{Z}_{\geq 3}$ and $d_1, d_2 \in \mathbb{Z}_{>0}$ such that $d = d_1 + d_2 + 2$. Let $\text{PBB}(d_1, d_2)$ be the set of foliations on $\mathbb{P}^n_{\mathbb{C}}$ that are linear pullback of a foliation of type (d_1, d_2) on $\mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}}$. Then $\overline{\text{PBB}(d_1, d_2)}$ is an irreducible component of $\operatorname{Fol}^1_d(\mathbb{P}^n_{\mathbb{C}})$.

 a W. Mendson - Folheações de codimensão um em característica positiva e aplicações b W. Mendson, J. V. Pereira - Codimension one foliations in positive characteristic

The topics in the proof include:

- the struture of the *p*-divisor for generic foliations on $\mathbb{P}^1_K \times \mathbb{P}^1_K$;
- proving the analogous theorem in positive characteristic and lift to characteristic 0.

Part II: Codimension one in small characteristics/degree

Technical lemma

We will make use of Medeiros' description of linear, locally decomposable, and integrable differential forms. The original statement was formulated over the field \mathbb{C} , but the result remains valid over any algebraically closed field K.

Technical lemma

We will make use of Medeiros' description of linear, locally decomposable, and integrable differential forms. The original statement was formulated over the field \mathbb{C} , but the result remains valid over any algebraically closed field K.

Theorem

^a ^b Let ω be a homogeneous locally decomposable q-form on \mathbb{A}_{K}^{n+1} . If the coefficients of ω are linear, then there exists a linear change of coordinates such that

Technical lemma

We will make use of Medeiros' description of linear, locally decomposable, and integrable differential forms. The original statement was formulated over the field \mathbb{C} , but the result remains valid over any algebraically closed field K.

Theorem

^a ^b Let ω be a homogeneous locally decomposable q-form on \mathbb{A}_{K}^{n+1} . If the coefficients of ω are linear, then there exists a linear change of coordinates such that

 $\bullet \ \omega = \alpha \wedge dx_1 \wedge \cdots \wedge dx_{q-1} \text{ for some linear 1-form } \alpha;$

Technical lemma

We will make use of Medeiros' description of linear, locally decomposable, and integrable differential forms. The original statement was formulated over the field \mathbb{C} , but the result remains valid over any algebraically closed field K.

Theorem

^{a b} Let ω be a homogeneous locally decomposable q-form on \mathbb{A}_{K}^{n+1} . If the coefficients of ω are linear, then there exists a linear change of coordinates such that

•
$$\omega = \alpha \wedge dx_1 \wedge \cdots \wedge dx_{q-1}$$
 for some linear 1-form α ; or

2 ω can be written as

$$\sum_{i=0}^{q} A_i \, dx_0 \wedge \cdots \wedge \widehat{dx_i} \wedge \cdots \wedge dx_q \, .$$

for suitable linear polynomials A_i .

Technical lemma

We will make use of Medeiros' description of linear, locally decomposable, and integrable differential forms. The original statement was formulated over the field \mathbb{C} , but the result remains valid over any algebraically closed field K.

Theorem

^a ^b Let ω be a homogeneous locally decomposable q-form on \mathbb{A}_{K}^{n+1} . If the coefficients of ω are linear, then there exists a linear change of coordinates such that

•
$$\omega = \alpha \wedge dx_1 \wedge \cdots \wedge dx_{q-1}$$
 for some linear 1-form α ; or

2 ω can be written as

$$\sum_{i=0}^{q} A_i \, dx_0 \wedge \cdots \wedge \widehat{dx_i} \wedge \cdots \wedge dx_q \, .$$

for suitable linear polynomials A_i .

Moreover, if ω is integrable, then in Case 1 $\alpha = df$ for some quadratic polynomial $f \in K[x_0, \ldots, x_n]$ and, in Case 2, the polynomials A_i belong to $K[x_0, \ldots, x_q]$.

^aA. S de Medeiros — Structural stability of integrable differential forms

 $[^]b \rm W.$ Mendson and J. V. Pereira — The space of foliations on projective spaces in positive characteristic

Degree zero

Theorem

- ^a Let K be an algebraically closed field. Let $n \ge 3$ and $1 \le q \le n-1$ be integers.
 - If the characteristic of K is different from 2, or if q > 1, then foliations of degree zero are defined by linear projections Pⁿ_K --→ P^q_K.
 - If the characteristic of K is 2 and q = 1, then $\operatorname{Fol}_0^1(\mathbb{P}^n_K) = \mathbb{P}H^0(\mathbb{P}^n_K, \Omega^1_{\mathbb{P}^n_K}(2)).$

In all cases, $\operatorname{Fol}^q_0(\mathbb{P}^n_K)$ is an irreducible algebraic variety.

 $^{a}\mathrm{W}.$ Mendson and J. V. Pereira — The space of foliations on projective spaces in positive characteristic

Degree zero

Theorem

- ^a Let K be an algebraically closed field. Let $n \ge 3$ and $1 \le q \le n-1$ be integers.
 - If the characteristic of K is different from 2, or if q > 1, then foliations of degree zero are defined by linear projections Pⁿ_K --→ P^q_K.
 - If the characteristic of K is 2 and q = 1, then $\operatorname{Fol}_0^1(\mathbb{P}^n_K) = \mathbb{P}H^0(\mathbb{P}^n_K, \Omega^1_{\mathbb{P}^n_K}(2)).$

In all cases, $\operatorname{Fol}_{0}^{q}(\mathbb{P}_{K}^{n})$ is an irreducible algebraic variety.

 $^{a}\mathrm{W}.$ Mendson and J. V. Pereira — The space of foliations on projective spaces in positive characteristic

Idea. Let \mathcal{F} be given by a *q*-projective form ω . By Medeiros' classification, we have two cases

Degree zero

Theorem

- a Let K be an algebraically closed field. Let $n\geq 3$ and $1\leq q\leq n-1$ be integers.
 - If the characteristic of K is different from 2, or if q > 1, then foliations of degree zero are defined by linear projections Pⁿ_K --→ P^q_K.
 - If the characteristic of K is 2 and q = 1, then $\operatorname{Fol}_0^1(\mathbb{P}^n_K) = \mathbb{P}H^0(\mathbb{P}^n_K, \Omega^1_{\mathbb{P}^n_K}(2)).$

In all cases, $\operatorname{Fol}_0^q(\mathbb{P}^n_K)$ is an irreducible algebraic variety.

 $^{a}\mathrm{W}.$ Mendson and J. V. Pereira — The space of foliations on projective spaces in positive characteristic

Idea. Let \mathcal{F} be given by a *q*-projective form ω . By Medeiros' classification, we have two cases

• Suppose that $\omega = dF \wedge dx_1 \wedge \cdots \wedge dx_{q-1}$ for some $F \in K[x_q, \ldots, x_n]$. Using the projective condition, we can check that q = 1, p = 2 and $\omega = dF$.

Degree zero

Theorem

- ^a Let K be an algebraically closed field. Let $n \ge 3$ and $1 \le q \le n-1$ be integers.
 - If the characteristic of K is different from 2, or if q > 1, then foliations of degree zero are defined by linear projections Pⁿ_K --→ P^q_K.
 - If the characteristic of K is 2 and q = 1, then $\operatorname{Fol}_0^1(\mathbb{P}^n_K) = \mathbb{P}H^0(\mathbb{P}^n_K, \Omega^1_{\mathbb{P}^n_K}(2)).$

In all cases, $\operatorname{Fol}_0^q(\mathbb{P}^n_K)$ is an irreducible algebraic variety.

 $^{a}\mathrm{W}.$ Mendson and J. V. Pereira — The space of foliations on projective spaces in positive characteristic

Idea. Let $\mathcal F$ be given by a $q\text{-projective form }\omega.$ By Medeiros' classification, we have two cases

- Suppose that $\omega = dF \wedge dx_1 \wedge \cdots \wedge dx_{q-1}$ for some $F \in K[x_q, \ldots, x_n]$. Using the projective condition, we can check that q = 1, p = 2 and $\omega = dF$.
- The second case corresponds to the **linear pullback**:

$$\omega = \sum_{i=0}^{q} A_i \, dx_0 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_q \, .$$

with $A_i \in K[x_0, \ldots, x_q]$.

Some irreducible components in characteristic p > 0

Proposition

^a Let K be an algebraically closed field of characteristic p > 0. For every integer $n \geq 3$ and $e \geq 1$, there exists an irreducible component $Cl_{pe-2}(\mathbb{P}_K^n)$ of $\mathsf{Fol}_{pe-2}^1(\mathbb{P}_K^n)$ given by an open subset of the projectivization of the vector space of closed polynomial projective 1-forms of degree pe on \mathbb{A}_K^{n+1} .

 $[^]a\mathrm{W}.$ Mendson and J. V. Pereira — The space of foliations on projective spaces in positive characteristic

¹³K. Saito On a generalization of de Rham lemma

Some irreducible components in characteristic p > 0

Proposition

^a Let K be an algebraically closed field of characteristic p > 0. For every integer $n \geq 3$ and $e \geq 1$, there exists an irreducible component $Cl_{pe-2}(\mathbb{P}_K^n)$ of $\mathsf{Fol}_{pe-2}^1(\mathbb{P}_K^n)$ given by an open subset of the projectivization of the vector space of closed polynomial projective 1-forms of degree pe on \mathbb{A}_K^{n+1} .

Idea. Deform a foliation given by an exact form, with a condition on the singular set, and apply the division lemma. 13

 $[^]a\mathrm{W}.$ Mendson and J. V. Pereira — The space of foliations on projective spaces in positive characteristic

¹³K. Saito On a generalization of de Rham lemma

Some irreducible components in characteristic p > 0

Proposition

^a Let K be an algebraically closed field of characteristic p > 0. For every integer $n \ge 3$ and $e \ge 1$, there exists an irreducible component $Cl_{pe-2}(\mathbb{P}_K^n)$ of $\mathsf{Fol}_{pe-2}^1(\mathbb{P}_K^n)$ given by an open subset of the projectivization of the vector space of closed polynomial projective 1-forms of degree pe on \mathbb{A}_K^{n+1} .

Idea. Deform a foliation given by an exact form, with a condition on the singular set, and apply the division lemma. 13

Proposition

^a Let d > 0. If K has characteristic p > d, then $\overline{PB(1, d, n)}$ is an irreducible component of $\operatorname{Fol}^1_d(\mathbb{P}^p_K)$.

 $^{a}\mathrm{W}.$ Mendson and J. V. Pereira — The space of foliations on projective spaces in positive characteristic

 $^{^{}d}\mathrm{W.}$ Mendson and J. V. Pereira — The space of foliations on projective spaces in positive characteristic

¹³K. Saito On a generalization of de Rham lemma

Degree one

Theorem

- ^a Let K be an algebraically closed field of characteristic $p \ge 0$.
 - If p = 2 then $\operatorname{Fol}_1^1(\mathbb{P}_K^n)$ has exactly one irreducible component: $\overline{\operatorname{PB}(1,1,n)}$.
 - **9** If p = 3 then $\operatorname{Fol}_1^1(\mathbb{P}_K^n)$ has exactly two irreducible components: $\overline{\operatorname{PB}}(1,1,n)$ and $\operatorname{Cl}_1(\mathbb{P}_K^n)$.
 - $\begin{array}{l} \bullet \quad If \ p \notin \{2,3\} \ then \ \textit{Fol}_1^1(\mathbb{P}_K^n) \ has \ exactly \ two \ irreducible \ components: \\ \hline \overline{\mathrm{PB}(1,1,n)} \ and \ \overline{\mathcal{R}(1,2)} \end{array}$

 $^a\mathrm{W.}$ Mendson and J. V. Pereira — The space of foliations on projective spaces in positive characteristic

Degree one

Theorem

- ^a Let K be an algebraically closed field of characteristic $p \ge 0$.
 - If p = 2 then $\operatorname{Fol}_1^1(\mathbb{P}_K^n)$ has exactly one irreducible component: $\overline{\operatorname{PB}(1,1,n)}$.
 - If p = 3 then $\operatorname{Fol}_1^1(\mathbb{P}_K^n)$ has exactly two irreducible components: $\overline{\operatorname{PB}(1,1,n)}$ and $\operatorname{Cl}_1(\mathbb{P}_K^n)$.
 - $\begin{array}{l} \bullet \quad If \ p \notin \{2,3\} \ then \ \textit{Fol}_1^1(\mathbb{P}_K^n) \ has \ exactly \ two \ irreducible \ components: \\ \hline \overline{\mathrm{PB}(1,1,n)} \ and \ \overline{\mathcal{R}(1,2)} \end{array}$

 $^a\mathrm{W.}$ Mendson and J. V. Pereira — The space of foliations on projective spaces in positive characteristic

Idea. Let ω be a projective 1-form defining a degree one foliation and consider the 2-form $d\omega$. By Medeiros' classification applied to the 2-form $d\omega$ we obtain homogeneous coordinates such that either:

Degree one

Theorem

- ^a Let K be an algebraically closed field of characteristic $p \ge 0$.
 - If p = 2 then $\operatorname{Fol}_1^1(\mathbb{P}^n_K)$ has exactly one irreducible component: $\overline{\operatorname{PB}(1,1,n)}$.
 - If p = 3 then $\operatorname{Fol}_1^1(\mathbb{P}_K^n)$ has exactly two irreducible components: $\overline{\operatorname{PB}(1,1,n)}$ and $\operatorname{Cl}_1(\mathbb{P}_K^n)$.
 - $\begin{array}{l} \bullet \quad If \ p \notin \{2,3\} \ then \ \textit{Fol}_1^1(\mathbb{P}_K^n) \ has \ exactly \ two \ irreducible \ components: \\ \hline \overline{\mathrm{PB}(1,1,n)} \ and \ \overline{\mathcal{R}(1,2)} \end{array}$

 $^a\mathrm{W.}$ Mendson and J. V. Pereira — The space of foliations on projective spaces in positive characteristic

Idea. Let ω be a projective 1-form defining a degree one foliation and consider the 2-form $d\omega$. By Medeiros' classification applied to the 2-form $d\omega$ we obtain homogeneous coordinates such that either:

We obtain homogeneous coordinates such that either:

- Case 1: $d\omega = df \wedge dx_0$ for some quadratic function $f \in K[x_0, \ldots, x_n]$, or
- Case 2: $d\omega = \sum_{i,j \in \{0,1,2\}} A_{ij} dx_i \wedge dx_j$ for some constants $A_{ij} \in K$.

Degree one

• If p = 2 and $d\omega$ is as in Case 1, then

$$\omega = 3\omega = i_R(d\omega) = 2fdx_0 + x_0df = x_0df.$$

This implies that ω is either identically zero or that ω has a zero locus of codimension one. In either case, ω does not define a codimension foliation of degree one. Thus, in characteristic two, the only irreducible component of $\mathsf{Fol}_1^1(\mathbb{P}_K^n)$ is $\overline{\mathrm{PB}(1,1,n)}$.

Degree one

• If p = 2 and $d\omega$ is as in Case 1, then

$$\omega = 3\omega = i_R(d\omega) = 2fdx_0 + x_0df = x_0df.$$

This implies that ω is either identically zero or that ω has a zero locus of codimension one. In either case, ω does not define a codimension foliation of degree one. Thus, in characteristic two, the only irreducible component of $\mathsf{Fol}_1^1(\mathbb{P}_K^n)$ is $\overline{\mathrm{PB}(1,1,n)}$.

If p ≠ 3 and dω is as in Case 2, then multiplying its contraction the radial vector field by 1/3 recovers ω, showing that it depends only one the variables x₀, x₁, x₂. Thus, it defines a foliation in PB(1, 1, n).

Degree one

• If p = 2 and $d\omega$ is as in Case 1, then

$$\omega = 3\omega = i_R(d\omega) = 2fdx_0 + x_0df = x_0df.$$

This implies that ω is either identically zero or that ω has a zero locus of codimension one. In either case, ω does not define a codimension foliation of degree one. Thus, in characteristic two, the only irreducible component of $\mathsf{Fol}_1^1(\mathbb{P}_K^n)$ is $\overline{\mathsf{PB}(1,1,n)}$.

- If p ≠ 3 and dω is as in Case 2, then multiplying its contraction the radial vector field by 1/3 recovers ω, showing that it depends only one the variables x₀, x₁, x₂. Thus, it defines a foliation in PB(1, 1, n).
- If $p \notin \{2,3\}$ and $d\omega$ is as in Case 1, then the explicit form of $d\omega$ shows that ω defines a foliation in $\overline{\mathcal{R}(1,2)}$. This completes the proof of Item 3.

Degree one

• If p = 2 and $d\omega$ is as in Case 1, then

$$\omega = 3\omega = i_R(d\omega) = 2fdx_0 + x_0df = x_0df.$$

This implies that ω is either identically zero or that ω has a zero locus of codimension one. In either case, ω does not define a codimension foliation of degree one. Thus, in characteristic two, the only irreducible component of $\mathsf{Fol}_1^1(\mathbb{P}_K^n)$ is $\overline{\mathsf{PB}(1,1,n)}$.

- If p ≠ 3 and dω is as in Case 2, then multiplying its contraction the radial vector field by 1/3 recovers ω, showing that it depends only one the variables x₀, x₁, x₂. Thus, it defines a foliation in PB(1, 1, n).
- If $p \notin \{2,3\}$ and $d\omega$ is as in Case 1, then the explicit form of $d\omega$ shows that ω defines a foliation in $\overline{\mathcal{R}(1,2)}$. This completes the proof of Item 3.
- If p = 3 and $d\omega$ is as in Case 1 then:

$$0 = 3\omega = i_R d\omega = 2f dx_0 - x_0 df = -(f dx_0 + x_0 df) = -d(fx_0).$$

This implies that f is a nonzero multiple of x_0^2 , so $d\omega = 0$, implying that ω defines a foliation in $Cl_1(\mathbb{P}^n_K)$ in this case.

Degree one

• If p = 2 and $d\omega$ is as in Case 1, then

$$\omega = 3\omega = i_R(d\omega) = 2fdx_0 + x_0df = x_0df.$$

This implies that ω is either identically zero or that ω has a zero locus of codimension one. In either case, ω does not define a codimension foliation of degree one. Thus, in characteristic two, the only irreducible component of $\mathsf{Fol}_1^1(\mathbb{P}_K^n)$ is $\overline{\mathsf{PB}(1,1,n)}$.

- If p ≠ 3 and dω is as in Case 2, then multiplying its contraction the radial vector field by 1/3 recovers ω, showing that it depends only one the variables x₀, x₁, x₂. Thus, it defines a foliation in PB(1, 1, n).
- If $p \notin \{2,3\}$ and $d\omega$ is as in Case 1, then the explicit form of $d\omega$ shows that ω defines a foliation in $\overline{\mathcal{R}(1,2)}$. This completes the proof of Item 3.
- If p = 3 and $d\omega$ is as in Case 1 then:

$$0 = 3\omega = i_R d\omega = 2f dx_0 - x_0 df = -(f dx_0 + x_0 df) = -d(fx_0).$$

This implies that f is a nonzero multiple of x_0^2 , so $d\omega = 0$, implying that ω defines a foliation in $Cl_1(\mathbb{P}^n_K)$ in this case.

• If $\underline{p=3}$ and $d\omega$ is as in Case 2 computations shows that ω defines a foliation in $\overline{\mathrm{PB}(1,1,n)}$.

Part III: Special irreducible components

Special foliations in codimension one

Fix K of characteristic p > 0 and let $F \in \mathrm{H}^{0}(\mathbb{P}^{n}_{K}, \mathcal{O}_{\mathbb{P}^{n}_{K}}(p))$. Note that dF defines an element of $\mathrm{H}^{0}(\mathbb{P}^{n}_{K}, \Omega^{1}_{\mathbb{P}^{n}_{K}}(p))$ and thus defines a foliation if $\mathrm{codim\,sing}(dF) \geq 2$.

Special foliations in codimension one

Fix K of characteristic p > 0 and let $F \in \mathrm{H}^{0}(\mathbb{P}_{K}^{n}, \mathcal{O}_{\mathbb{P}_{K}^{n}}^{n}(p))$. Note that dF defines an element of $\mathrm{H}^{0}(\mathbb{P}_{K}^{n}, \Omega_{\mathbb{P}_{K}^{n}}^{1}(p))$ and thus defines a foliation if $\mathrm{codim} \operatorname{sing}(dF) \geq 2$. Consider the rational map

$$\Phi \colon \mathbb{P}(\mathbf{S}_p) \longrightarrow \mathsf{Fol}_{p-2}^1(\mathbb{P}_K^n)$$
$$[F] \mapsto [dF].$$

Special foliations in codimension one

Fix K of characteristic p > 0 and let $F \in \mathrm{H}^{0}(\mathbb{P}_{K}^{n}, \mathcal{O}_{\mathbb{P}_{K}^{n}}(p))$. Note that dF defines an element of $\mathrm{H}^{0}(\mathbb{P}_{K}^{n}, \Omega_{\mathbb{P}_{K}^{n}}^{1}(p))$ and thus defines a foliation if $\mathrm{codim} \operatorname{sing}(dF) \geq 2$. Consider the rational map

$$\begin{split} \Phi \colon \mathbb{P}(\mathbf{S}_p) &\longrightarrow \mathsf{Fol}_{p-2}^1(\mathbb{P}_K^n) \\ & [F] \mapsto [dF]. \end{split}$$

Theorem

Let $Cl_{p-2}(\mathbb{P}_K^n)$ be the Zariski closure of the image Φ . Then, $Cl_{p-2}(\mathbb{P}_K^n)$ is an irreducible component of $\operatorname{Fol}_{p-2}^1(\mathbb{P}_K^n)$.

Special foliations in codimension one

Fix K of characteristic p > 0 and let $F \in \mathrm{H}^{0}(\mathbb{P}_{K}^{n}, \mathcal{O}_{\mathbb{P}_{K}^{n}}^{n}(p))$. Note that dF defines an element of $\mathrm{H}^{0}(\mathbb{P}_{K}^{n}, \Omega_{\mathbb{P}_{K}^{n}}^{1}(p))$ and thus defines a foliation if $\mathrm{codim} \operatorname{sing}(dF) \geq 2$. Consider the rational map

$$\Phi \colon \mathbb{P}(\mathbf{S}_p) \longrightarrow \mathsf{Fol}_{p-2}^1(\mathbb{P}_K^n)$$
$$[F] \mapsto [dF].$$

Theorem

Let $Cl_{p-2}(\mathbb{P}_K^n)$ be the Zariski closure of the image Φ . Then, $Cl_{p-2}(\mathbb{P}_K^n)$ is an irreducible component of $\operatorname{Fol}_{p-2}^1(\mathbb{P}_K^n)$.

Lemma

^{ab} Let $X \subset \operatorname{Fof}_d^d(\mathbb{P}_K^n)$ be an irreducible subvariety. If there exists $[\omega] \in X$ such that the Zariski tangent space of $\operatorname{Fof}_d^d(\mathbb{P}_K^n)$ has dimension equal to the dimension of X then X is an irreducible component of $\operatorname{Fof}_d^d(\mathbb{P}_K^n)$.

 $^{d}\mathrm{R.}$ C. da Costa, R. Lizarbe and J. V. Pereira — Codimension one foliations of degree three on projective spaces

^bAndrew Hubery — Irreducible components of quiver Grassmannians,

Special foliations in codimension one

Idea: We will show that the differential

$$d\Phi_F: T_F(\mathbb{P}\mathbf{S}_p) \to T_\omega \mathsf{Fol}^1_d(\mathbb{P}^n_K) \qquad d\Phi_F(G) = dG$$

of Φ at the point F is surjective.

 $^{^{14}\}mathrm{K}.$ Saito On a generalization of de Rham lemma

Special foliations in codimension one

Idea: We will show that the differential

$$d\Phi_F: T_F(\mathbb{P}\mathbf{S}_p) \to T_\omega \mathsf{Fol}_d^1(\mathbb{P}_K^n) \qquad d\Phi_F(G) = dG$$

of Φ at the point F is surjective.

- Choose F such that $\operatorname{sing}(dF)$ has **codimension at least three**, and take $\omega_t = dF + t\sigma \in T_{dF}\operatorname{Fol}^1_d(\mathbb{P}^n_K)$. We need to show that $\sigma = dG$ for some $G \in \mathbb{P}\mathbf{S_p}$.
- Example:

$$F = x_0 x_1^{p-1} + x_1 x_2^{p-1} + \dots + x_{n-1} x_n^{p-1} + x_0^p$$

 $^{^{14}}$ K. Saito On a generalization of de Rham lemma

Special foliations in codimension one

Idea: We will show that the differential

$$d\Phi_F: T_F(\mathbb{P}\mathbf{S}_p) \to T_\omega \mathsf{Fol}^1_d(\mathbb{P}^n_K) \qquad d\Phi_F(G) = dG$$

of Φ at the point F is surjective.

- Choose F such that $\operatorname{sing}(dF)$ has **codimension at least three**, and take $\omega_t = dF + t\sigma \in T_{dF}\operatorname{Fol}^1_d(\mathbb{P}^n_K)$. We need to show that $\sigma = dG$ for some $G \in \mathbb{P}\mathbf{S_p}$.
- Example:

$$F = x_0 x_1^{p-1} + x_1 x_2^{p-1} + \dots + x_{n-1} x_n^{p-1} + x_0^p$$

• Integrability condition on ω_t implies that $dF \wedge d\sigma = 0$

¹⁴K. Saito On a generalization of de Rham lemma

Special foliations in codimension one

Idea: We will show that the differential

$$d\Phi_F: T_F(\mathbb{P}\mathbf{S}_p) \to T_\omega \mathsf{Fol}^1_d(\mathbb{P}^n_K) \qquad d\Phi_F(G) = dG$$

of Φ at the point F is surjective.

- Choose F such that $\operatorname{sing}(dF)$ has codimension at least three, and take $\omega_t = dF + t\sigma \in T_{dF}\operatorname{Fol}^1_d(\mathbb{P}^n_K)$. We need to show that $\sigma = dG$ for some $G \in \mathbb{P}\mathbf{S_p}$.
- Example:

$$F = x_0 x_1^{p-1} + x_1 x_2^{p-1} + \dots + x_{n-1} x_n^{p-1} + x_0^p$$

- Integrability condition on ω_t implies that $dF \wedge d\sigma = 0$
- Division lemma¹⁴ implies that $d\sigma = \eta \wedge dF$. Degree comparison implies $d\sigma = 0$, and this concludes the argument (see next lemma).

 $^{^{14}}$ K. Saito On a generalization of de Rham lemma

Special foliations in codimension one

Idea: We will show that the differential

$$d\Phi_F: T_F(\mathbb{P}\mathbf{S}_p) \to T_\omega \mathsf{Fol}_d^1(\mathbb{P}_K^n) \qquad d\Phi_F(G) = dG$$

of Φ at the point F is surjective.

- Choose F such that $\operatorname{sing}(dF)$ has **codimension at least three**, and take $\omega_t = dF + t\sigma \in T_{dF}\operatorname{Fol}^1_d(\mathbb{P}^n_K)$. We need to show that $\sigma = dG$ for some $G \in \mathbb{P}\mathbf{S_p}$.
- Example:

$$F = x_0 x_1^{p-1} + x_1 x_2^{p-1} + \dots + x_{n-1} x_n^{p-1} + x_0^p$$

- Integrability condition on ω_t implies that $dF \wedge d\sigma = 0$
- Division lemma¹⁴ implies that $d\sigma = \eta \wedge dF$. Degree comparison implies $d\sigma = 0$, and this concludes the argument (see next lemma).

Lemma

Let $\alpha \in \mathrm{H}^0(\mathbb{P}^n_K, \Omega^1_{\mathbb{P}^n_K}(p))$ be a closed projective 1-form. Then there exists a homogeneous polynomial G of degree p, such that $\alpha = dG$.

 $^{^{14}\}mathrm{K}.$ Saito On a generalization of de Rham lemma

Special irreducible components

Proposition

Let K be an algebraically closed field of characteristic p > 0. For every integer $n \geq 3$ and $e \geq 1$, there exists an irreducible component $Cl_{pe-2}(\mathbb{P}_K^n)$ of $\mathsf{Fol}_{pe-2}^1(\mathbb{P}_K^n)$ given by an open subset of the projectivization of the vector space of closed polynomial projective 1-forms of degree pe on \mathbb{A}_K^{n+1} .

 $^{^{15}}$ F. Cukierman, J. V. Pereira, I. Vainsencher — Stability of foliations induced by rational maps

Special irreducible components

Proposition

Let K be an algebraically closed field of characteristic p > 0. For every integer $n \geq 3$ and $e \geq 1$, there exists an irreducible component $Cl_{pe-2}(\mathbb{P}_K^n)$ of $\mathsf{Fol}_{pe-2}^1(\mathbb{P}_K^n)$ given by an open subset of the projectivization of the vector space of closed polynomial projective 1-forms of degree pe on \mathbb{A}_K^{n+1} .

Higher codimension? ¹⁵

 $^{^{15}{\}rm F.}$ Cukierman, J. V. Pereira, I. Vainsencher — Stability of foliations induced by rational maps

Special irreducible components

Proposition

Let K be an algebraically closed field of characteristic p > 0. For every integer $n \geq 3$ and $e \geq 1$, there exists an irreducible component $Cl_{pe-2}(\mathbb{P}_K^n)$ of $\mathsf{Fol}_{pe-2}^1(\mathbb{P}_K^n)$ given by an open subset of the projectivization of the vector space of closed polynomial projective 1-forms of degree pe on \mathbb{A}_K^{n+1} .

Higher codimension?¹⁵

Theorem

^a Assume $1 \le q < n-1$. Consider the rational map

$$\Phi : \mathbb{P}\mathbf{S}_p \times \dots \times \mathbb{P}\mathbf{S}_p \quad \dashrightarrow \quad \textit{Fol}_d^q(\mathbb{P}_K^n)$$

$$(F_1, \dots, F_q) \quad \mapsto \quad dF_1 \wedge \dots \wedge dF_d$$

where d = qp - q - 1. Let U be the largest open subset where Φ is a morphism. Then the closure $\overline{\Phi(U)}$ of $\Phi(U)$ in is an irreducible component of $\mathsf{Fol}^d_d(\mathbb{P}^n_K)$.

^aT. Fassarella, J. P. Figueredo and W. Mendson — The space of *p*-closed foliations on projective spaces (in progress)

 $^{^{15}{\}rm F.}$ Cukierman, J. V. Pereira, I. Vainsencher — Stability of foliations induced by rational maps

• Let $\underline{F} = (F_1, \dots, F_q) \in \mathbb{P}\mathbf{S}_p \times \dots \times \mathbb{P}\mathbf{S}_p$ such that the projective *j*-form $dF_1 \wedge \dots \wedge dF_i$

has singular set of codimension $\geq n + 1 - j$, for every $j = 1, \ldots, q$.

• Let $\underline{F} = (F_1, \dots, F_q) \in \mathbb{P}\mathbf{S}_p \times \dots \times \mathbb{P}\mathbf{S}_p$ such that the projective *j*-form $dF_1 \wedge \dots \wedge dF_i$

has singular set of codimension $\geq n + 1 - j$, for every $j = 1, \ldots, q$.

• By multilinearity, the map induced in tangent spaces is given by

$$d\Phi_{\underline{F}}(\underline{G}) = \sum_{j=1}^{q} dF_1 \wedge \dots \wedge dF_{j-1} \wedge dG_j \wedge dF_{j+1} \wedge \dots \wedge dF_q.$$

• Let $\underline{F} = (F_1, \dots, F_q) \in \mathbb{P}\mathbf{S}_p \times \dots \times \mathbb{P}\mathbf{S}_p$ such that the projective *j*-form $dF_1 \wedge \dots \wedge dF_j$

has singular set of codimension $\geq n + 1 - j$, for every $j = 1, \ldots, q$.

• By multilinearity, the map induced in tangent spaces is given by

$$d\Phi_{\underline{F}}(\underline{G}) = \sum_{j=1}^{q} dF_1 \wedge \dots \wedge dF_{j-1} \wedge dG_j \wedge dF_{j+1} \wedge \dots \wedge dF_q.$$

• Let $\eta_t = dF_1 \wedge \cdots \wedge dF_q + t\eta$ be an element in the tangent space. The integrability condition and a technical lemma ensure that $d\eta = 0$. Using the locally decomposable condition, we get

$$dF_i \wedge dF_j \wedge \eta = 0 \qquad \forall i, j$$

• Let $\underline{F} = (F_1, \dots, F_q) \in \mathbb{P}\mathbf{S}_p \times \dots \times \mathbb{P}\mathbf{S}_p$ such that the projective *j*-form $dF_1 \wedge \dots \wedge dF_j$

has singular set of codimension $\geq n + 1 - j$, for every $j = 1, \ldots, q$.

• By multilinearity, the map induced in tangent spaces is given by

$$d\Phi_{\underline{F}}(\underline{G}) = \sum_{j=1}^{q} dF_1 \wedge \dots \wedge dF_{j-1} \wedge dG_j \wedge dF_{j+1} \wedge \dots \wedge dF_q.$$

• Let $\eta_t = dF_1 \wedge \cdots \wedge dF_q + t\eta$ be an element in the tangent space. The integrability condition and a technical lemma ensure that $d\eta = 0$. Using the locally decomposable condition, we get

$$dF_i \wedge dF_j \wedge \eta = 0 \qquad \forall i, j$$

• The last formula implies that there are homogeneous 1-forms α_i , $i = 1, \ldots, q$, such that

$$\eta = \sum_{j=1}^{q} dF_1 \wedge \dots \wedge dF_{j-1} \wedge \alpha_j \wedge dF_{j+1} \wedge \dots \wedge dF_q.$$

From this and $i_R \eta = 0$, we see that $i_R \alpha_j = 0$ for every $j = 1, \ldots, q$. Then $\alpha_j \in \mathrm{H}^0(\mathbb{P}^n_K, \Omega^1_{\mathbb{P}^n_K}(p)), \ j = 1, \ldots, q$.

• Since $d\eta = 0$, differentiating both sides yields

$$\sum_{j=1}^{q} dF_1 \wedge \dots \wedge dF_{j-1} \wedge d\alpha_j \wedge dF_{j+1} \wedge \dots \wedge dF_q = 0$$

which implies

$$d\alpha_j \wedge dF_1 \wedge \dots \wedge dF_q = 0$$
 for all $j = 1, \dots, q$

• Since $d\eta = 0$, differentiating both sides yields

$$\sum_{j=1}^{q} dF_1 \wedge \dots \wedge dF_{j-1} \wedge d\alpha_j \wedge dF_{j+1} \wedge \dots \wedge dF_q = 0$$

which implies

$$d\alpha_j \wedge dF_1 \wedge \dots \wedge dF_q = 0$$
 for all $j = 1, \dots, q$

• Since $\operatorname{codim}(dF_1 \wedge \cdots \wedge dF_q) > 2$, we may apply the division lemma to obtain

$$d\alpha_j = \sum_{i=1}^q \alpha_{ji} \wedge dF_i.$$

for suitable projective 1-forms α_{ji} .

• Since $d\eta = 0$, differentiating both sides yields

$$\sum_{j=1}^{q} dF_1 \wedge \dots \wedge dF_{j-1} \wedge d\alpha_j \wedge dF_{j+1} \wedge \dots \wedge dF_q = 0$$

which implies

$$d\alpha_j \wedge dF_1 \wedge \dots \wedge dF_q = 0$$
 for all $j = 1, \dots, q$

• Since $\operatorname{codim}(dF_1 \wedge \cdots \wedge dF_q) > 2$, we may apply the division lemma to obtain

$$d\alpha_j = \sum_{i=1}^q \alpha_{ji} \wedge dF_i.$$

for suitable projective 1-forms α_{ji} .

• Comparing degrees, we see that all α_{ji} vanish identically. Hence $d\alpha_j = 0$ for every $j = 1, \ldots, q$. It follows that there are homogeneous polynomials G_j of degree p such that $\alpha_j = dG_j$.

Why is not q = n - 1 included?

In the case q = n - 1, the integrability is automatic, but we can consider **the** space of *p*-closed foliations, $\operatorname{PFol}_d^{n-1}(\mathbb{P}_K^n)$, and study the problem of irreducible components in this space.

Why is not q = n - 1 included?

In the case q = n - 1, the integrability is automatic, but we can consider **the** space of *p*-closed foliations, $\operatorname{PFol}_d^{n-1}(\mathbb{P}_K^n)$, and study the problem of irreducible components in this space.

• Consider the rational map

$$\Phi \colon \mathbb{P}\mathbf{S}_p \times \dots \times \mathbb{P}\mathbf{S}_p \quad \dashrightarrow \quad \mathrm{PFol}_d^{n-1}(\mathbb{P}_K^n)$$

$$(F_1, \dots, F_{n-1}) \quad \mapsto \quad dF_1 \wedge \dots \wedge dF_{n-1}.$$

Let U be the largest open subset where Φ is a morphism.

Why is not q = n - 1 included?

In the case q = n - 1, the integrability is automatic, but we can consider **the space of** *p***-closed foliations**, $\mathsf{PFol}_d^{n-1}(\mathbb{P}_K^n)$, and study the problem of irreducible components in this space.

• Consider the rational map

$$\begin{aligned} \Phi \colon \mathbb{P}\mathbf{S}_p \times \cdots \times \mathbb{P}\mathbf{S}_p & \dashrightarrow \quad \mathrm{PFol}_d^{n-1}(\mathbb{P}_K^n) \\ (F_1, \dots, F_{n-1}) & \mapsto \quad dF_1 \wedge \cdots \wedge dF_{n-1}. \end{aligned}$$

Let U be the largest open subset where Φ is a morphism.

Question: Is the closure $\overline{\Phi(U)}$ of $\Phi(U)$ in $\operatorname{PFol}_d^{n-1}(\mathbb{P}_K^n)$ an irreducible component of $\operatorname{PFol}_d^{n-1}(\mathbb{P}_K^n)$?

Why is not q = n - 1 included?

In the case q = n - 1, the integrability is automatic, but we can consider **the space of** *p***-closed foliations**, $\mathsf{PFol}_d^{n-1}(\mathbb{P}_K^n)$, and study the problem of irreducible components in this space.

• Consider the rational map

$$\Phi \colon \mathbb{P}\mathbf{S}_p \times \dots \times \mathbb{P}\mathbf{S}_p \quad \dashrightarrow \quad \mathrm{PFol}_d^{n-1}(\mathbb{P}_K^n)$$

$$(F_1, \dots, F_{n-1}) \quad \mapsto \quad dF_1 \wedge \dots \wedge dF_{n-1}.$$

Let U be the largest open subset where Φ is a morphism.

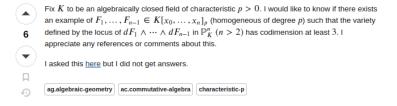
Question: Is the closure $\overline{\Phi(U)}$ of $\Phi(U)$ in $\operatorname{PFol}_d^{n-1}(\mathbb{P}_K^n)$ an irreducible component of $\operatorname{PFol}_d^{n-1}(\mathbb{P}_K^n)$?

Remark

So far, we do not know if there is an example of a foliation of the type $dF_1 \wedge \cdots \wedge dF_{n-1}$ in characteristic p > 2, which has a singular set of **codimension at least** 3. This prevents the division lemma from working, and it is not possible to apply the same technical lemmas as applied in case q < n - 1. Jason Starr provides answers in characteristic two on MathOverflow.

About differential forms in positive characteristic

Asked 2 months ago Modified 2 months ago Viewed 575 times



Share Cite Edit Close Delete Flag

Thank you ;-)