On reduction modulo p of foliations

Wodson Mendson

IRMAR - Université de Rennes 1

May 30, 2023

Structure

- Part I: Introduction;
- \bullet Part II: Reduction modulo p;
- ullet Part III: Applications to foliations over $\mathbb C.$

 $\begin{array}{c} \textbf{Introdution} \\ \text{Reduction modulo } p \\ \text{Applications to foliations over } \mathbb{C} \end{array}$

Part I: Introduction

Foliations

K = algebraically closed field

In this talk: foliations = foliations on the projective plane

Foliations

K = algebraically closed field

In this talk: foliations = foliations on the projective plane

Let $d \in \mathbb{Z}_{>0}$.

A **foliation**, \mathcal{F} , of degree d on the projective plane \mathbb{P}^2_K is given, mod K^* , by a non-zero element $\omega \in \mathrm{H}^0(\mathbb{P}^2_K, \Omega^1_{\mathbb{P}^2_K}(d+2))$ with finite singular locus

Foliations

K = algebraically closed field

In this talk: foliations = foliations on the projective plane

Let $d \in \mathbb{Z}_{>0}$.

A foliation, \mathcal{F} , of degree d on the projective plane \mathbb{P}^2_K is given, mod K^* , by a non-zero element $\omega \in \mathrm{H}^0(\mathbb{P}^2_K, \Omega^1_{\mathbb{P}^2_K}(d+2))$ with finite singular locus

Explicitly:

• Using the Euler exact sequence we can see ω as a projective 1-form:

$$\omega = Adx + Bdy + Cdz$$

on \mathbb{A}^3_K such that $A,B,C\in K[x,y,z]$ are homogeneous of degree d+1 and Ax+By+Cz=0 with

$$sing(\omega) = \mathcal{Z}(A, B, C) = \{ p \in \mathbb{P}^2_K \mid A(p) = B(p) = C(p) = 0 \}$$

finite.

Foliation in terms of vector field

Assume that the characteristic of K does not divide d+2. The notion of foliation can be given in terms of homogeneous vector fields.

Foliation in terms of vector field

Assume that the characteristic of K does not divide d+2. The notion of foliation can be given in terms of homogeneous vector fields.

• In this sense, a foliation of degree d on \mathbb{P}^2_K is determined, modulo K^* , by a homogeneous vector field on \mathbb{A}^3_K :

$$v = A_0 \partial_x + A_1 \partial_y + A_2 \partial_z \in \mathfrak{X}_d(\mathbb{A}_K^3)$$

where $A_0, A_1, A_2 \in K[x, y, z]$ are homogeneous of degree d with

$$\mathbf{div}(v) = \partial_x A_0 + \partial_y A_1 + \partial_z A_2 = 0$$

Foliation in terms of vector field

Assume that the characteristic of K does not divide d+2. The notion of foliation can be given in terms of homogeneous vector fields.

 In this sense, a foliation of degree d on P²_K is determined, modulo K*, by a homogeneous vector field on A³_K:

$$v = A_0 \partial_x + A_1 \partial_y + A_2 \partial_z \in \mathfrak{X}_d(\mathbb{A}_K^3)$$

where $A_0, A_1, A_2 \in K[x, y, z]$ are homogeneous of degree d with

$$\mathbf{div}(v) = \partial_x A_0 + \partial_y A_1 + \partial_z A_2 = 0$$

The equivalence of these notions is given by the following result:

Proposition

^a There is a bijection between the set of projective 1-forms on \mathbb{A}^3_K of degree d+1 and homogeneous vector fields with divergent zero of degree d.

^aJouanolou - Equations de Pfaff algébriques

Suppose that \mathcal{F} is defined by the homogeneous 1-form

$$\omega = Adx + Bdy + Cdz$$

and write

$$d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy).$$

Suppose that \mathcal{F} is defined by the homogeneous 1-form

$$\omega = Adx + Bdy + Cdz$$

and write

$$d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy).$$

The homogeneous vector field degree d with divergent zero is given by

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

Suppose that \mathcal{F} is defined by the homogeneous 1-form

$$\omega = Adx + Bdy + Cdz$$

and write

$$d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy).$$

The homogeneous vector field degree d with divergent zero is given by

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

Example: Let $\alpha \in K^*$ and consider:

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

Suppose that \mathcal{F} is defined by the homogeneous 1-form

$$\omega = Adx + Bdy + Cdz$$

and write

$$d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy).$$

The homogeneous vector field degree d with divergent zero is given by

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

Example: Let $\alpha \in K^*$ and consider:

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

Then ω defines a foliation of degree 1 on \mathbb{P}^2_K and the vector field associated is given by:

$$v = \left(\frac{2\alpha - 1}{3}\right) x \partial_x + \left(\frac{2 - \alpha}{3}\right) y \partial_y + \left(\frac{-1 - \alpha}{3}\right) z \partial_z$$

Let $\mathcal F$ be a foliation on $\mathbb P^2_K$ given by a projective 1-form $\omega.$

Let \mathcal{F} be a foliation on \mathbb{P}^2_K given by a projective 1-form ω .

Let $C=\{F=0\}\subset \mathbb{P}^2_K$ be an algebraic curve given by a irreducible polynomial $F\in K[x,y,z].$

Let $\mathcal F$ be a foliation on $\mathbb P^2_K$ given by a projective 1-form $\omega.$

Let $C=\{F=0\}\subset \mathbb{P}^2_K$ be an algebraic curve given by a irreducible polynomial $F\in K[x,y,z].$

Definition

The curve C is \mathcal{F} -invariant if there is a homogeneous 2-form σ on \mathbb{A}^3_K such that

$$dF\wedge\omega=F\sigma$$

Let \mathcal{F} be a foliation on \mathbb{P}^2_K given by a projective 1-form ω .

Let $C=\{F=0\}\subset \mathbb{P}^2_K$ be an algebraic curve given by a irreducible polynomial $F\in K[x,y,z].$

Definition

The curve C is \mathcal{F} -invariant if there is a homogeneous 2-form σ on \mathbb{A}^3_K such that

$$dF\wedge\omega=F\sigma$$

Example: foliations with invariant curves

• The foliation given by

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

has $\{x=0\}$, $\{y=0\}$ and $\{z=0\}$ as invariant curves.

Example: foliations with invariant curves

• The foliation given by

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

has $\{x=0\}$, $\{y=0\}$ and $\{z=0\}$ as invariant curves.

• Logarithmic foliations: Let $d_1, d_2, \ldots, d_r \in \mathbb{Z}_{>0}$ and $F_1, \ldots, F_r \in K[x, y, z]$ homogeneous polynomials with $d_i = \deg(F_i)$. Suppose that F_1, \ldots, F_r are irreducible and coprime. Let $\alpha_1, \ldots, \alpha_r \in K^*$ such that $\sum_{i=1}^r \alpha_i d_i = 0$ and consider the 1-form

$$\Omega = F_1 F_2 \cdots F_{r-1} F_r \sum_{i=1}^r \alpha_i \frac{dF_i}{F_i}.$$

The 1-form Ω defines, \mathcal{F}_{Ω} , a foliation of degree $d = \sum_{i} d_{i} - 2$ on \mathbb{P}^{2}_{K} . We say that \mathcal{F}_{Ω} is a **logarithmic foliation** of type (d_{1}, \ldots, d_{r}) . The curves $C_{i} = \{F_{i} = 0\}$ are \mathcal{F}_{Ω} -invariant.

Jouanolou example: foliations without invariant curves

Let $d \in \mathbb{Z}_{>1}$ and consider the foliation on \mathbb{P}^2_K given by the projective 1-form:

$$\begin{split} \mathcal{F}_d \colon \Omega_d &= (x^dz - y^{d+1})dx + (xy^d - z^{d+1})dy + (z^dy - x^{d+1})dz \\ v_d &= z^d\partial_x + x^d\partial_y + y^d\partial_z \end{split}$$

Jouanolou example: foliations without invariant curves

Let $d \in \mathbb{Z}_{>1}$ and consider the foliation on \mathbb{P}^2_K given by the projective 1-form:

$$\begin{split} \mathcal{F}_d \colon \Omega_d &= (x^dz - y^{d+1})dx + (xy^d - z^{d+1})dy + (z^dy - x^{d+1})dz \\ v_d &= z^d\partial_x + x^d\partial_y + y^d\partial_z \end{split}$$

Theorem (Jouanolou)

^a If $K = \mathbb{C}$ the foliation \mathcal{F}_d does not have invariant algebraic curves.

^aJouanolou - Equations de Pfaff algébriques

Jouanolou example: foliations without invariant curves

Let $d \in \mathbb{Z}_{>1}$ and consider the foliation on \mathbb{P}^2_K given by the projective 1-form:

$$\begin{split} \mathcal{F}_d \colon \Omega_d &= (x^dz - y^{d+1})dx + (xy^d - z^{d+1})dy + (z^dy - x^{d+1})dz \\ v_d &= z^d\partial_x + x^d\partial_y + y^d\partial_z \end{split}$$

Theorem (Jouanolou)

^a If $K = \mathbb{C}$ the foliation \mathcal{F}_d does not have invariant algebraic curves.

^aJouanolou - Equations de Pfaff algébriques

This result implies in particular that on $\mathbb{P}^2_{\mathbb{C}}$ almost all foliation on the complex projective plane have no algebraic invariant curves.

Introdution Reduction modulo pApplications to foliations over ${\mathbb C}$

Part II: Reduction modulo p

Consider the case where $K=\mathbb{C}$. Let \mathcal{F} be a foliation on $\mathbb{P}^2_{\mathbb{C}}$ of degree d defined by the projective 1-form:

$$\omega = Adx + Bdy + Cdz \qquad A,B,C \in \mathbb{C}[x,y,z]_{d+1}$$

Consider the case where $K = \mathbb{C}$. Let \mathcal{F} be a foliation on $\mathbb{P}^2_{\mathbb{C}}$ of degree d defined by the projective 1-form:

$$\omega = Adx + Bdy + Cdz \qquad A,B,C \in \mathbb{C}[x,y,z]_{d+1}$$

and let $\mathbb{Z}[\mathcal{F}]$ the finitely generated \mathbb{Z} -algebra obtained by adjoining all coefficients and their inverses that occur in A,B and C

Consider the case where $K = \mathbb{C}$. Let \mathcal{F} be a foliation on $\mathbb{P}^2_{\mathbb{C}}$ of degree d defined by the projective 1-form:

$$\omega = Adx + Bdy + Cdz \qquad A,B,C \in \mathbb{C}[x,y,z]_{d+1}$$

and let $\mathbb{Z}[\mathcal{F}]$ the finitely generated \mathbb{Z} -algebra obtained by adjoining all coefficients and their inverses that occur in A,B and C

Example

Let \mathcal{F} be a foliation on $\mathbb{P}^2_{\mathbb{C}}$ given by the 1-form:

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

for some $\alpha \in \mathbb{C} - \mathbb{Q}$. Then the algebra associated is $\mathbb{Z}[\alpha, \alpha^{-1}]$

Consider the case where $K = \mathbb{C}$. Let \mathcal{F} be a foliation on $\mathbb{P}^2_{\mathbb{C}}$ of degree d defined by the projective 1-form:

$$\omega = Adx + Bdy + Cdz$$
 $A, B, C \in \mathbb{C}[x, y, z]_{d+1}$

and let $\mathbb{Z}[\mathcal{F}]$ the finitely generated \mathbb{Z} -algebra obtained by adjoining all coefficients and their inverses that occur in A,B and C

Example

Let \mathcal{F} be a foliation on $\mathbb{P}^2_{\mathbb{C}}$ given by the 1-form:

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

for some $\alpha \in \mathbb{C} - \mathbb{Q}$. Then the algebra associated is $\mathbb{Z}[\alpha, \alpha^{-1}]$

For the Jouanolou foliation, $A, B, C \in \mathbb{Z}[x, y, z]$ so that $\mathbb{Z}[\mathcal{F}_d] = \mathbb{Z}$.

Fact: For each maximal ideal $\mathfrak{p} \in \mathbf{Spm}(\mathbb{Z}[\mathcal{F}])$ the residue field $\mathbb{F}_{\mathfrak{p}} = \mathbb{Z}[\mathcal{F}]/\mathfrak{p}$ is finite, in particular of characteristic p > 0.

Fact: For each maximal ideal $\mathfrak{p} \in \mathbf{Spm}(\mathbb{Z}[\mathcal{F}])$ the residue field $\mathbb{F}_{\mathfrak{p}} = \mathbb{Z}[\mathcal{F}]/\mathfrak{p}$ is finite, in particular of characteristic p > 0.

Denote by $\omega_{\mathfrak{p}}$ the 1-form over $\overline{\mathbb{F}}_{\mathfrak{p}}$ obtained by reduction modulo \mathfrak{p} of all coefficient which appears in A, B and C. We obtain a non-zero element of $\mathrm{H}^{0}(\mathbb{P}^{2}_{\overline{\mathbb{F}}_{\mathfrak{p}}},\Omega^{1}_{\mathbb{P}^{2}_{\overline{\mathbb{F}}_{\mathfrak{p}}}}\otimes\mathcal{O}_{\mathbb{P}^{2}_{\overline{\mathbb{F}}_{\mathfrak{p}}}}\left(d+2)\right) \text{ and } \omega_{\mathfrak{p}} \text{ determines a foliation on } \mathbb{P}^{2}_{\overline{\mathbb{F}}_{\mathfrak{p}}}:$

$$\omega_{\mathfrak{p}} = Adx + Bdy + Cdz \mod \mathfrak{p}$$

Fact: For each maximal ideal $\mathfrak{p} \in \mathbf{Spm}(\mathbb{Z}[\mathcal{F}])$ the residue field $\mathbb{F}_{\mathfrak{p}} = \mathbb{Z}[\mathcal{F}]/\mathfrak{p}$ is finite, in particular of characteristic p > 0.

Denote by $\omega_{\mathfrak{p}}$ the 1-form over $\overline{\mathbb{F}}_{\mathfrak{p}}$ obtained by reduction modulo \mathfrak{p} of all coefficient which appears in A, B and C. We obtain a non-zero element of $\mathrm{H}^0(\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}, \Omega^1_{\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}} \otimes \mathcal{O}_{\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}}(d+2))$ and $\omega_{\mathfrak{p}}$ determines a foliation on $\mathbb{P}^2_{\overline{\mathbb{F}}_{\mathfrak{p}}}$:

$$\omega_{\mathfrak{p}} = Adx + Bdy + Cdz \mod \mathfrak{p}$$

Definition

The foliation determined by $\omega_{\mathfrak{p}}$ is denoted by $\mathcal{F}_{\mathfrak{p}}$ and is called the **reduction** modulo p of \mathcal{F} .

Natural question:

Natural question:

Problem

Suppose that an abstract property P holds for $\mathcal{F}_{\mathfrak{p}}$ for an infinitely many primes (or almost all primes) $\mathfrak{p} \in Spm(\mathbb{Z}[\mathcal{F}])$. What we can say about \mathcal{F} ?

Natural question:

Problem

Suppose that an abstract property P holds for $\mathcal{F}_{\mathfrak{p}}$ for an infinitely many primes (or almost all primes) $\mathfrak{p} \in Spm(\mathbb{Z}[\mathcal{F}])$. What we can say about \mathcal{F} ?

- infinitely many primes = primes in some dense subset of $Spm(\mathbb{Z}[\mathcal{F}])$;
- almost all primes = primes in some non-empty open subset of $Spm(\mathbb{Z}[\mathcal{F}])$.

Natural question:

Problem

Suppose that an abstract property P holds for $\mathcal{F}_{\mathfrak{p}}$ for an infinitely many primes (or almost all primes) $\mathfrak{p} \in Spm(\mathbb{Z}[\mathcal{F}])$. What we can say about \mathcal{F} ?

- infinitely many primes = primes in some dense subset of $Spm(\mathbb{Z}[\mathcal{F}])$;
- almost all primes = primes in some non-empty open subset of $\mathbf{Spm}(\mathbb{Z}[\mathcal{F}])$.

When $\mathbb{Z}[\mathcal{F}] = \mathbb{Z}$ then the notions: infinitely many primes and all most primes are the usual notions.

The property ${f P}$ can be:

• the existence of $\mathcal{F}_{\mathfrak{p}}$ -invariant curves;

The property ${f P}$ can be:

- \bullet the existence of $\mathcal{F}_{\mathfrak{p}}\text{-invariant curves};$
- the foliation $\mathcal{F}_{\mathfrak{p}}$ is *p*-closed;

Reduction modulo p

The property \mathbf{P} can be:

- ullet the existence of $\mathcal{F}_{\mathfrak{p}}$ -invariant curves;
- the foliation $\mathcal{F}_{\mathfrak{p}}$ is p-closed;

Proposition

Let $\mathcal F$ be a foliation on $\mathbb P^2_{\mathbb C}$ and suppose that $\mathcal F_{\mathfrak p}$ has an invariant curve of degree less than d for almost all primes $\mathfrak p$. Then, $\mathcal F$ has an invariant curve of degree less than d.

Reduction modulo p

The property \mathbf{P} can be:

- ullet the existence of $\mathcal{F}_{\mathfrak{p}}$ -invariant curves;
- the foliation $\mathcal{F}_{\mathfrak{p}}$ is p-closed;

Proposition

Let \mathcal{F} be a foliation on $\mathbb{P}^2_{\mathbb{C}}$ and suppose that $\mathcal{F}_{\mathfrak{p}}$ has an invariant curve of degree less than d for almost all primes \mathfrak{p} . Then, \mathcal{F} has an invariant curve of degree less than d.

Idea: the set $S(\mathcal{F},K,d)$ of foliations on \mathbb{P}^2_K that have invariant curves of degree $\leq d$ is algebraic variety over K. In particular, $S(\mathcal{F},\mathbb{C},d)\neq\varnothing$ if and only if $S(\mathcal{F},\overline{\mathbb{F}}_{\mathfrak{p}},d)\neq\varnothing$ for almost all primes \mathfrak{p} .

K= algebraically closed field of characteristic p>0.

K = algebraically closed field of characteristic p > 0.

Let \mathcal{F} be a foliation on \mathbb{P}^2_K of degree d defined by

$$\omega = Adx + Bdy + Cdz$$

and suppose that $p \nmid d + 2$.

K = algebraically closed field of characteristic p > 0.

Let \mathcal{F} be a foliation on \mathbb{P}^2_K of degree d defined by

$$\omega = Adx + Bdy + Cdz$$

and suppose that $p \nmid d + 2$. Write $d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy)$ and let v_{ω} be the vector field of degree d associated to \mathcal{F} given by

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

K = algebraically closed field of characteristic p > 0.

Let \mathcal{F} be a foliation on \mathbb{P}^2_K of degree d defined by

$$\omega = Adx + Bdy + Cdz$$

and suppose that $p \nmid d + 2$. Write $d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy)$ and let v_{ω} be the vector field of degree d associated to \mathcal{F} given by

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

The p-divisor is given by

$$\Delta_{\mathcal{F}} = \{i_{v_{\omega}^{p}}\omega = 0\}.$$

Note that $\Delta_{\mathcal{F}}$ has degree p(d-1)+d+2.

K = algebraically closed field of characteristic p > 0.

Let \mathcal{F} be a foliation on \mathbb{P}^2_K of degree d defined by

$$\omega = Adx + Bdy + Cdz$$

and suppose that $p \nmid d + 2$. Write $d\omega = (d+2)(Ldy \wedge dz - Mdx \wedge dz + Ndx \wedge dy)$ and let v_{ω} be the vector field of degree d associated to \mathcal{F} given by

$$v_{\omega} = L\partial_x + M\partial_y + N\partial_z.$$

The p-divisor is given by

$$\Delta_{\mathcal{F}} = \{i_{v_{\omega}^p}\omega = 0\}.$$

Note that $\Delta_{\mathcal{F}}$ has degree p(d-1)+d+2.

Definition

The foliation \mathcal{F} is p-closed if $\Delta_{\mathcal{F}} = 0$.

Let $\alpha \in K^*$ and consider:

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

Let $\alpha \in K^*$ and consider:

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

Then ω defines a foliation of degree 1 on \mathbb{P}^2_K . The vector field associated is given by:

$$v = \left(\frac{2\alpha - 1}{3}\right)x\partial_x + \left(\frac{2 - \alpha}{3}\right)y\partial_y + \left(\frac{-1 - \alpha}{3}\right)z\partial_z$$

Let $\alpha \in K^*$ and consider:

$$\omega = yzdx - \alpha xzdy + (\alpha - 1)xydz.$$

Then ω defines a foliation of degree 1 on \mathbb{P}^2_K . The vector field associated is given by:

$$v = \left(\frac{2\alpha - 1}{3}\right) x \partial_x + \left(\frac{2 - \alpha}{3}\right) y \partial_y + \left(\frac{-1 - \alpha}{3}\right) z \partial_z$$

By iteration we get:

$$v^{p} = \left(\frac{2\alpha^{p} - 1}{3}\right)x\partial_{x} + \left(\frac{2 - \alpha^{p}}{3}\right)y\partial_{y} + \left(\frac{-1 - \alpha^{p}}{3}\right)z\partial_{z}$$

and the equation for the p-divisor is:

$$i_{vp}\omega = yzv^p(x) - \alpha xzv^p(y) + (\alpha - 1)xyv^p(z) = (\alpha^p - \alpha)xyz$$

The main property of the p-divisor is the following.

The main property of the p-divisor is the following.

Proposition

- ^a Let \mathcal{F} be a non-p-closed foliation on \mathbb{P}^2_k and $C \subset \mathbb{P}^2_k$ be an algebraic curve.
 - If C is \mathcal{F} -invariant then $\operatorname{ord}_C(\Delta_{\mathcal{F}}) > 0$;

The main property of the p-divisor is the following.

Proposition

- ^a Let \mathcal{F} be a non-p-closed foliation on \mathbb{P}^2_k and $C \subset \mathbb{P}^2_k$ be an algebraic curve.
 - If C is \mathcal{F} -invariant then $\operatorname{ord}_C(\Delta_{\mathcal{F}}) > 0$;
 - If $\operatorname{ord}_C(\Delta_{\mathcal{F}}) \not\equiv 0 \mod p$ then C is \mathcal{F} -invariant.

The main property of the p-divisor is the following.

Proposition

- ^a Let \mathcal{F} be a non-p-closed foliation on \mathbb{P}^2_k and $C \subset \mathbb{P}^2_k$ be an algebraic curve.
 - If C is \mathcal{F} -invariant then $\operatorname{ord}_C(\Delta_{\mathcal{F}}) > 0$;
 - If $\operatorname{ord}_C(\Delta_{\mathcal{F}}) \not\equiv 0 \mod p$ then C is \mathcal{F} -invariant.

Corollary

On the projective plane over characteristic p > 0 any foliation of degree d such that $p \nmid d + 2$ has an invariant algebraic curve.

^aW.Mendson - Foliations on smooth algebraic surface in positive characteristic

Corollary

On the projective plane over characteristic p > 0 any non-p-closed foliation of degree d has an invariant algebraic curve of degree less than or equal to p(d-1) + d + 2.

Corollary

On the projective plane over characteristic p > 0 any non-p-closed foliation of degree d has an invariant algebraic curve of degree less than or equal to p(d-1) + d + 2.

Problem: Let \mathcal{F} be a foliation in the projective plane over the characteristic p > 0. How many solutions can \mathcal{F} have?

Corollary

On the projective plane over characteristic p > 0 any non-p-closed foliation of degree d has an invariant algebraic curve of degree less than or equal to p(d-1) + d + 2.

Problem: Let \mathcal{F} be a foliation in the projective plane over the characteristic p > 0. How many solutions can \mathcal{F} have?

Proposition

^a A foliation is p-closed if and only if it has infinitely many solutions.

^aBrunella, Nicolau - Sur les hypersurfaces solutions des équations de Pfaff

Corollary

On the projective plane over characteristic p > 0 any non-p-closed foliation of degree d has an invariant algebraic curve of degree less than or equal to p(d-1) + d + 2.

Problem: Let \mathcal{F} be a foliation in the projective plane over the characteristic p > 0. How many solutions can \mathcal{F} have?

Proposition

^a A foliation is p-closed if and only if it has infinitely many solutions.

^aBrunella, Nicolau - Sur les hypersurfaces solutions des équations de Pfaff

Theorem

^a Let p > 2 be a prime number such that $7 \nmid p + 4$ and $p \not\equiv 1 \mod 3$. Then the Jouanolou foliation, \mathcal{F}_2 , over characteristic p > 0 has an unique invariant algebraic curve and that curve has degree p + 4.

^aW.Mendson - Arithmetic aspects of the Jouannlou foliation

 $\begin{array}{c} \text{Introdution} \\ \text{Reduction modulo } p \\ \text{Applications to foliations over } \mathbb{C} \end{array}$

Part III: Applications to foliations over $\mathbb C$

Algebraic solutions

Goal: use reduction modulo p and property of the p-divivor to prove the non-algebraicity of foliations.

 $^{^{1}\}mathrm{Carnicer}$ - The Poincare problem in the nondicritical case

Algebraic solutions

Goal: use reduction modulo p and property of the p-divivor to prove the non-algebraicity of foliations.

Proposition

^a Let \mathcal{F} be a non-discritical foliation on $\mathbb{P}^2_{\mathbb{C}}$ defined by a projective 1-form $\omega = Adx + Bdy + Cdz$ with $A, B, C \in \mathbb{Z}[x, y, z]$. Let p be a prime number such that p > d + 2. If $\Delta_{\mathcal{F}_p}$ is irreducible then \mathcal{F} has no algebraic solutions.

^aW.Mendson - Foliations on smooth algebraic surfaces in position characteristic

¹Carnicer - The Poincare problem in the nondicritical case

Algebraic solutions

Goal: use reduction modulo p and property of the p-divivor to prove the non-algebraicity of foliations.

Proposition

^a Let \mathcal{F} be a non-discritical foliation on $\mathbb{P}^2_{\mathbb{C}}$ defined by a projective 1-form $\omega = Adx + Bdy + Cdz$ with $A, B, C \in \mathbb{Z}[x, y, z]$. Let p be a prime number such that p > d + 2. If $\Delta_{\mathcal{F}_p}$ is irreducible then \mathcal{F} has no algebraic solutions.

^aW.Mendson - Foliations on smooth algebraic surfaces in position characteristic

Idea: Suppose that there is a invariant curve $C = \{F = 0\}$ that is \mathcal{F} -invariant. We can assume that $F \in \mathbb{Z}[x,y,z]$. The Carnicer bound¹ implies that $\deg(C) \leq d+2$. Reducing modulo p and using the irreducibility of $\Delta_{\mathcal{F}_p}$ we get a contradiction.

¹Carnicer - The Poincare problem in the nondicritical case

Applications

Corollary

 $The\ Jouannlou\ foliation\ of\ degree\ 2\ or\ 3\ has\ no\ algebraic\ solutions.$

Applications

Corollary

The Jouannlou foliation of degree 2 or 3 has no algebraic solutions.

Let \mathcal{F} be a foliation on $\mathbb{P}^2_{\mathbb{C}}$.

Proposition

If the p-divisor $\Delta_{\mathcal{F}_{\mathfrak{p}}}$ is irreducible for almost all primes \mathfrak{p} then \mathcal{F} has no algebraic solutions.

Applications

Corollary

The Jouannlou foliation of degree 2 or 3 has no algebraic solutions.

Let \mathcal{F} be a foliation on $\mathbb{P}^2_{\mathbb{C}}$.

Proposition

If the p-divisor $\Delta_{\mathcal{F}_{\mathfrak{p}}}$ is irreducible for almost all primes \mathfrak{p} then \mathcal{F} has no algebraic solutions.

Idea: Suppose that there is a invariant curve $C = \{F = 0\}$ that is \mathcal{F} -invariant. This curve has degree e. For large primes p we obtain $C \mod p = \Delta_{\mathcal{F}_p}$, a contradiction since the degree of the p-divisor depends of p.

Reduction modulo pApplications to foliations over \mathbb{C}

There are foliations on $\mathbb{P}^2_{\mathbb{C}}$ without algebraic invariant curves such that its reduction modulo p has non-irreducible p-divisor for infinitely many primes p.

There are foliations on $\mathbb{P}^2_{\mathbb{C}}$ without algebraic invariant curves such that its reduction modulo p has non-irreducible p-divisor for infinitely many primes p.

Example

Let Φ be the morphism

$$\Phi\colon \mathbb{P}^2_{\mathbb{C}} \longrightarrow \mathbb{P}^2_{\mathbb{C}} \qquad [x:y:z] \mapsto [x^2:y^2:z^2]$$

and consider $\mathcal{G} = \Phi^* \mathcal{F}_d$, where \mathcal{F}_d is the Jouanolou foliation of degree d. Then, $\mathcal{G}_{\mathfrak{p}}$ is not p-closed for infinitely many primes \mathfrak{p} with the p-divisor having a p-component.

Using reduction modulo two it is possible to give a new proof of the following result²:

 $^{^2\}mathrm{W.Mendson}$ - Arithmetic aspects of the Jouannlou foliation

 $^{^3\}mathrm{J.V.Pereira},~\mathrm{P.F.S\'{a}nchez}$ - Automorphim and non-integrability

Using reduction modulo two it is possible to give a new proof of the following result^2 :

Theorem

Let $d \in \mathbb{Z}$ such that $d \not\equiv 1 \mod 3$ and $d \equiv 1 \mod 2$. If $K = \mathbb{C}$ then the Jouanolou foliation of degree d has no algebraic solutions.

The idea of the proof:

²W.Mendson - Arithmetic aspects of the Jouannlou foliation

 $^{^3\}mathrm{J.V.Pereira},~\mathrm{P.F.S\'{a}nchez}$ - Automorphim and non-integrability

Using reduction modulo two it is possible to give a new proof of the following result^2 :

Theorem

Let $d \in \mathbb{Z}$ such that $d \not\equiv 1 \mod 3$ and $d \equiv 1 \mod 2$. If $K = \mathbb{C}$ then the Jouanolou foliation of degree d has no algebraic solutions.

The idea of the proof:

step 1: Suppose that there is an algebraic curve C_0 given by an irreducible polynomial $F \in \mathbb{C}[x, y, z]$;

²W.Mendson - Arithmetic aspects of the Jouannlou foliation

³J.V.Pereira, P.F.Sánchez - Automorphim and non-integrability

Using reduction modulo two it is possible to give a new proof of the following result^2 :

Theorem

Let $d \in \mathbb{Z}$ such that $d \not\equiv 1 \mod 3$ and $d \equiv 1 \mod 2$. If $K = \mathbb{C}$ then the Jouanolou foliation of degree d has no algebraic solutions.

The idea of the proof:

step 1: Suppose that there is an algebraic curve C_0 given by an irreducible polynomial $F \in \mathbb{C}[x, y, z]$;

step 2: An particular property of the automorphim group of \mathcal{F}_d^3 permits to construct a invariant curve C_1 , from C_0 , that has degree d+2 and it is defined over a number field L. In particular, $\deg(C_1) \equiv 1 \mod 2$;

²W.Mendson - Arithmetic aspects of the Jouannlou foliation

³J.V.Pereira, P.F.Sánchez - Automorphim and non-integrability

Using reduction modulo two it is possible to give a new proof of the following result^2 :

Theorem

Let $d \in \mathbb{Z}$ such that $d \not\equiv 1 \mod 3$ and $d \equiv 1 \mod 2$. If $K = \mathbb{C}$ then the Jouanolou foliation of degree d has no algebraic solutions.

The idea of the proof:

step 1: Suppose that there is an algebraic curve C_0 given by an irreducible polynomial $F \in \mathbb{C}[x, y, z]$;

step 2: An particular property of the automorphim group of \mathcal{F}_d^3 permits to construct a invariant curve C_1 , from C_0 , that has degree d+2 and it is defined over a number field L. In particular, $\deg(C_1) \equiv 1 \mod 2$;

step 3: The condition $d \equiv 1 \mod 2$ implies that the foliation $\mathcal{F}_d \mod 2\mathbb{Z}$ is not 2-closed. Main fact: the 2-divisor is irreducible of degree 3d;

 $^{^2\}mathrm{W.Mendson}$ - Arithmetic aspects of the Jouannolou foliation

³J.V.Pereira, P.F.Sánchez - Automorphim and non-integrability

Using reduction modulo two it is possible to give a new proof of the following result^2 :

Theorem

Let $d \in \mathbb{Z}$ such that $d \not\equiv 1 \mod 3$ and $d \equiv 1 \mod 2$. If $K = \mathbb{C}$ then the Jouanolou foliation of degree d has no algebraic solutions.

The idea of the proof:

- step 1: Suppose that there is an algebraic curve C_0 given by an irreducible polynomial $F \in \mathbb{C}[x, y, z]$;
- step 2: An particular property of the automorphim group of \mathcal{F}_d^3 permits to construct a invariant curve C_1 , from C_0 , that has degree d+2 and it is defined over a number field L. In particular, $\deg(C_1) \equiv 1 \mod 2$;
- step 3: The condition $d \equiv 1 \mod 2$ implies that the foliation $\mathcal{F}_d \mod 2\mathbb{Z}$ is not 2-closed. Main fact: the 2-divisor is irreducible of degree 3d;
- **step 4:** Reducing C_1 modulo 2 we get a contradiction by degree comparison since $C_1 = \Delta_{\mathcal{F}_d} \mod 2$.

²W.Mendson - Arithmetic aspects of the Jouannlou foliation

³J.V.Pereira, P.F.Sánchez - Automorphim and non-integrability

The technique of reduction modulo p for codimension one foliation on the projective spaces can be used to give a proof of the following theorem about irreducible components:

The technique of reduction modulo p for codimension one foliation on the projective spaces can be used to give a proof of the following theorem about irreducible components:

Theorem A

ab Let $d \in \mathbb{Z}_{\geq 3}$ and $d_1, d_2 \in \mathbb{Z}_{> 0}$ such that $d = d_1 + d_2 + 2$. Consider the rational map

$$\begin{split} \Psi \colon \operatorname{Map}_1(\mathbb{P}^3_\mathbb{C}, \mathbb{P}^1_\mathbb{C} \times \mathbb{P}^1_\mathbb{C}) \times \mathbb{F}ol_{(d_1, d_2)}(\mathbb{P}^1_\mathbb{C} \times \mathbb{P}^1_\mathbb{C}) - -- &\to \mathbb{F}ol_d(\mathbb{P}^3_\mathbb{C}) \\ (\Phi, \mathcal{G}) \mapsto \Phi^* \mathcal{G}. \end{split}$$

Let U be the open set of definition of Ψ and $C_{(d;d_1,d_2)}$ the Zariski closure of $\Psi(U)$. Then, $C_{(d;d_1,d_2)}$ is an irreductible component of $\mathbb{F}ol_d(\mathbb{P}^3_{\mathbb{C}})$.

The topics in the proof include:

 $[^]a\mathrm{W.Mendson}$ - Folheações de codimensão um em característica positiva e aplicações

^bW.Mendson, J.V.Pereira - Codimension one foliations in positive characteristic

The technique of reduction modulo p for codimension one foliation on the projective spaces can be used to give a proof of the following theorem about irreducible components:

Theorem A

ab Let $d \in \mathbb{Z}_{\geq 3}$ and $d_1, d_2 \in \mathbb{Z}_{> 0}$ such that $d = d_1 + d_2 + 2$. Consider the rational map

$$\begin{split} \Psi \colon \operatorname{Map}_1(\mathbb{P}^3_\mathbb{C},\mathbb{P}^1_\mathbb{C} \times \mathbb{P}^1_\mathbb{C}) \times \mathbb{F}ol_{(d_1,d_2)}(\mathbb{P}^1_\mathbb{C} \times \mathbb{P}^1_\mathbb{C}) - -- &\to \mathbb{F}ol_d(\mathbb{P}^3_\mathbb{C}) \\ (\Phi,\mathcal{G}) \mapsto \Phi^*\mathcal{G}. \end{split}$$

Let U be the open set of definition of Ψ and $C_{(d;d_1,d_2)}$ the Zariski closure of $\Psi(U)$. Then, $C_{(d;d_1,d_2)}$ is an irreductible component of $\mathbb{F}ol_d(\mathbb{P}^3_{\mathbb{C}})$.

 $^a\mathrm{W.Mendson}$ - Folheações de codimensão um em característica positiva e aplicações

 $^b\mathrm{W.Mendson}$, J.V.Pereira - Codimension one foliations in positive characteristic

The topics in the proof include:

• the struture of the *p*-divisor for generic foliations on $\mathbb{P}^1_K \times \mathbb{P}^1_K$;

The technique of reduction modulo p for codimension one foliation on the projective spaces can be used to give a proof of the following theorem about irreducible components:

Theorem A

ab Let $d \in \mathbb{Z}_{\geq 3}$ and $d_1, d_2 \in \mathbb{Z}_{> 0}$ such that $d = d_1 + d_2 + 2$. Consider the rational map

$$\Psi \colon \operatorname{Map}_{1}(\mathbb{P}^{3}_{\mathbb{C}}, \mathbb{P}^{1}_{\mathbb{C}} \times \mathbb{P}^{1}_{\mathbb{C}}) \times \operatorname{Fol}_{(d_{1}, d_{2})}(\mathbb{P}^{1}_{\mathbb{C}} \times \mathbb{P}^{1}_{\mathbb{C}}) - - - \to \operatorname{Fol}_{d}(\mathbb{P}^{3}_{\mathbb{C}})$$

$$(\Phi, \mathcal{G}) \mapsto \Phi^{*}\mathcal{G}.$$

Let U be the open set of definition of Ψ and $C_{(d;d_1,d_2)}$ the Zariski closure of $\Psi(U)$. Then, $C_{(d;d_1,d_2)}$ is an irreductible component of $\operatorname{Fold}(\mathbb{P}^3_{\mathbb{C}})$.

 $^a\mathrm{W.Mendson}$ - Folheações de codimensão um em característica positiva e aplicações

^bW.Mendson, J.V.Pereira - Codimension one foliations in positive characteristic

The topics in the proof include:

- the struture of the *p*-divisor for generic foliations on $\mathbb{P}^1_K \times \mathbb{P}^1_K$;
- proving the analogous theorem in positive characteristic and lift to characteristic 0.

Introdution Reduction modulo pApplications to foliations over $\mathbb C$

Thank you ;-)